首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the tetranuclear gold cluster [Au4((PPh2)2C2B9H10)2(AsPh3)2] (1), which contains the nido-carborane-diphosphine [7,8-(PPh2)2C2B9H10]-, with various tertiary phosphines leads to derivatives [Au4((PPh2)2C2B9H10)2-(PR3)2] (PR3 = PPh3 (2), P(4-MeC6H4)3 (3), P(4-OMeC6H4)3 (4)). The X-ray crystal structure of complex 4 shows a tetrahedral framework of gold atoms, two of which are chelated by the diphosphine, and two are coordinated to one monophosphine ligand each. These compounds are very stable and are obtained in high yield. MP2 calculations suggest that the two types of chemically nonequivalent gold atoms can be formally assigned as Au(I) (those attached to the arsines or phosphines) and Au(0) (those bonded to the anionic diphosphine) and emphasize the role of correlation in the gold-gold interactions. The compounds are luminescent. The emission is assigned to a gold-centered spin-forbidden transition; the assignment of the oxidation state of the gold centers on this basis leads to results coincident with those obtained by theoretical calculations.  相似文献   

2.
A crown ether isocyanide CNR (R = benzo-15-crown-5) has been synthesized by dehydration of the corresponding formamide. Substitution reactions with the appropriate gold(I) precursors afford the luminescent mononuclear derivatives [AuX(CNR)] (X = Cl, C 6F 5, Br, I), [Au(C 6F 4OCH 2C 6H 4OC nH 2 n+1 - p)(CNR)] ( n = 4, 8, 10, 12), and [Au(C 6F 4OCH 2C 6H 2-3,4,5-(OC n H 2 n+1 ) 3(CNR)] ( n = 4, 8, 12). X-ray diffraction studies of [AuCl(CNR)] show the molecules associated in a tetranuclear manner with an antiparallel orientation and gold-gold distances of 3.420 and 3.427 A (Au...Au...Au angles are 121.2 degrees ). These tetranuclear units generate infinite zigzag chains through longer Au...Au distances of 3.746 A and weak C-H...O nonclassic interactions. Nucleophilic attack to the coordinated isocyanide in [AuCl(CNR)] by methanol or a primary amine produces the carbene derivatives [AuCl{C((NHR)(OMe)}] and [AuCl{C(NHR')(NHR)}] (R' = Me, n-Bu). The ether crown in these complexes is able to coordinate sodium from NaClO 4, affording the corresponding bimetallic complexes (Na/Au = 1:1). The derivatives containing one alkoxy chain are liquid crystals, displaying a smectic C mesophase (for n > 4), whereas the trialkoxy derivatives display unidentified or smectic C mesophases, depending on the alkyl chain length. After complexation of sodium salts, the mesogenic behavior is lost. All of the derivatives are luminescent at room temperature in the solid state with emission maxima in the range 405-550 nm; they emit at 77 K from 410 to 572 nm. Only the ligand and the fluoroaryl complexes emit in solution at room temperature, but all of the compounds are luminescent at 77 K. Very interestingly, some fluoroaryl derivatives with alkoxy chains are luminescent not only in the solid, and in solution, but also in the mesophase, and in the isotropic liquid at moderate temperatures. These are the first metal complexes ever reported to show luminescence in the isotropic liquid state.  相似文献   

3.
Reactions of [Au(PPh3)Cl], (Bu4N)[AuCl4] and the organometallic gold complex [Au(damp-C1,N)Cl2] (damp- = 2-(N,N-dimethylaminomethyl)phenyl) with the potentially tri- and tetradentate proligands PhP(C6H3-SH-2-R-3)2 (H2L1a, R = SiMe3; H2L1b, R = H) and P(C6H4-SH-2)3 (H3L2) result in the formation of mono- or dinuclear gold complexes depending on the precursor used. Monomeric complexes of the type [AuL1Cl] are formed upon the reaction with [Au(damp-C1,N)Cl2], but small amounts of dinuclear [AuL1]2 complexes with gold in two different oxidation states, +1 and +3, have been isolated as side-products. The dinuclear compounds are obtained in better yields from [AuCl4]-. A dinuclear complex having two Au(III) centers can be isolated from the reaction of [Au(PPh3)Cl] with H3L2, whereas from the reaction with H2L1b the mononuclear [Au(Ph3P)HL1b] is obtained, which contains a three-coordinate gold atom. Comparatively short gold-gold distances have been found in the dinuclear complexes (2.978(2) and 3.434(1) A). They are indicative of weak gold-gold interactions, which is unusual for gold(III).  相似文献   

4.
Treatment of the gold(I) halide complexes LAuCl (L = PMe3, PPh3, CNC6H3Me2-2,6) with K[Ph2P(Se)NP(Se)Ph2] provides the gold-selenium coordination compounds [(N(Ph2PSe)2-Se,Se')AuL]. However, on standing for a number of days, the complex [(N(Ph2PSe)2-Se,Se')AuPMe3] gains a phosphine to provide the bis(phosphine) species [(N(Ph2PSe)2-Se,Se')Au(PMe3)2]. Treatment of the K[Ph2P(Se)NP(Se)Ph2] ligand with [(Ph3PAu)3O]BF4 allows the isolation of [(N(Ph2PSe)2-Se,Se')(AuPPh3)2]BF4. Reaction of the complex [(dppm)(AuCl)2] with AgSO3CF3 followed by addition of the ligand K[Ph2P(Se)NP(Se)Ph2] results in the formation of [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3 and treatment of [(tht)AuCl] (tht = tetrahydrothiophene) with an equimolar quantity of K[Ph2P(Se)NP(Se)Ph2] affords the complex [(N(Ph2PSe)2-Se,Se')2Au2]. The compounds [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3, [(N(Ph2PSe)2-Se,Se')AuPPh3] and [(N(Ph2PSe)2-Se,Se')Au(PMe3)2] have been investigated crystallographically. The results reveal that the metal centers are two-, three-, and four-coordinate, respectively. The cationic, eight-membered ring complex bearing the dppm ligand displays transannular aurophilic bonding and is further associated into dimers via intermolecular gold-selenium contacts. The six-membered rings in the other two structures have C2-symmetrical twist conformations, however, the Au(I) coordination sphere in [N(PPh2Se)2]AuPPh3 is not fully symmetrical. The Au-Se bond lengths increase dramatically as the coordination number of the metal atom becomes larger.  相似文献   

5.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

6.
The reaction of [(AuCl)2dppm] (dppm=Ph2PCH2PPh2) with PhP(SiMe3)2 and P(SiMe3)3 leads to the formation of the gold cluster compound [Au18(P)2(PPh)4(PHPh)(dppm)6]Cl3 (1). The crystal structure investigation shows a central Au7P2 unit formed by two P centered gold tetrahedra sharing the central gold corner. This central unit is surrounded by a 10-membered Au5P5 ring which, together with the remaining six gold atoms, builds two Au4P rectangular and two Au3P trigonal pyramids. The different structure motifs are connected by the phosphine ligands. The compound has been characterized using microanalysis, IR spectroscopy, ESI-MS, and 31P NMR techniques. Luminescence measurements have also been carried out.  相似文献   

7.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

8.
The reaction of the phosphine thiosemicarbazone ligands HLPH and HLPMe with Au(I) ions yields the gold complexes [Au(3)(HLPH)(2)Cl(2)]Cl·2MeOH (1·2MeOH) and [Au(2)(HLPMe)Cl(2)] (2). The structures determined by X Ray diffraction, [Au(3)(HLPH)(2)Cl(2)]Cl·4MeOH (1·4MeOH) and [Au(2)(HLPMe)Cl(2)](2) (2), are the first examples of gold(I) thiosemicarbazone clusters showing aurophilicity. The structure of the trinuclear cation 1 contains the Au(1) atom located in an inversion centre, being connected to another gold(I) atom, Au(2), through a phosphino thiosemicarbazone molecule which acts as a S,P-bridging ligand. Additionally, every gold(I) atom in the trinuclear cation 1 assembles into trinuclear linear cluster units by means of close gold-gold interactions, being connected through the crystal cell in a 2D zigzag mode. The crystal structure of [Au(2)(HLPMe)Cl(2)](2) (2) contains one discrete molecule [(AuCl)(2)(HLPMe)] in the asymmetric unit, which is further assembled into tetranuclear [(AuCl)(2)(HLPMe)](2) units by means of close gold-gold interactions. Both clusters are highly luminescent in solution.  相似文献   

9.
The novel water soluble bidentate phosphine ligand 1,3-bis(di-2-pyridylphosphino)propane (d2pypp) has been synthesized by a convenient route involving treatment of 2-pyridyllithium with Cl(2)P(CH(2))(3)PCl(2) and isolation in crystalline form as the hydrochloride salt. The synthesis of the precursor Cl(2)P(CH(2))(3)PCl(2) has been optimized by the use of triphosgene as the chlorinating agent. The 2 : 1 and 1 : 2 AuCl : d2pypp adducts have been synthesized and characterized by NMR spectroscopy and single crystal X-ray studies, and shown to be of the form (AuCl)(2)(mu-d2pypp-P,P') and [Au(d2pypp-P,P')(2)]Cl(.3.75H(2)O), respectively. The latter is more lipophilic than analogous 1 : 2 adducts of gold(I) chloride with the diphosphine ligands 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n = 2, 3 and 4, based on measurement of the n-octanol-water partition coefficient (log P = -0.46). A single crystal structure determination of the 1 : 2 Au(I) complex of the 3-pyridyl ethane ligand shows it to be of the form [Au(d3pype-P,P')(2)]Cl.5H(2)O. The in vitro cytotoxic activity of [Au(d2pypp)(2)]Cl was assessed in human normal and cancer breast cells and selective toxicity to the cancer cells found. The significance of these results to the antitumour properties of chelated 1 : 2 Au(I) diphosphine complexes is discussed.  相似文献   

10.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

11.
The new 2-phenylthiocarbamoyl-1,3-dimesitylimidazolium inner salt (IMes·CSNPh) reacts with [AuCl(L)] in the presence of NH(4)PF(6) to yield [(L)Au(SCNPh·IMes)](+) (L = PMe(3), PPh(3), PCy(3), CNBu(t)). The carbene-containing precursor [(IDip)AuCl] reacts with IMes·CSNPh under the same conditions to afford the complex [(IDip)Au(SCNPh·IMes)](+) (IDip = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Treatment of the diphosphine complex [(dppm)(AuCl)(2)] with one equivalent of IMes·CSNPh yields the digold metallacycle, [(dppm)Au(2)(SCNPh·IMes)](2+), while reaction of [L(2)(AuCl)(2)] with two equivalents of IMes·CSNPh results in [(L(2)){Au(SCNPh·IMes)}(2)](2+) (L(2) = dppb, dppf, or dppa; dppb = 1,4-bis(diphenylphosphino)butane, dppf = 1,1'-bis(diphenylphosphino)ferrocene, dppa = 1,4-bis(diphenylphosphino)acetylene). The homoleptic complex [Au(SCNPh·IMes)(2)](+) is formed on reaction of [AuCl(tht)] (tht = tetrahydrothiophene) with two equivalents of the imidazolium-2-phenylthiocarbamoyl ligand. This product reacts with AgOTf to yield the mixed metal compound [AuAg(SCNPh·IMes)(2)](2+). Over time, the unusual trimetallic complex [Au(AgOTf)(2)(SCNPh·IMes)(2)](+) is formed. The sulfur-oxygen mixed-donor ligands IMes·COS and SIMes·COS (SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) were used to prepare [(L)Au(SOC·IMes)](+) and [(L)Au(SOC·SIMes)](+) from [(L)AuCl] (L = PPh(3), CN(t)Bu). The bimetallic examples [(dppf){Au(SOC·IMes)}(2)](2+) and [(dppf){Au(SOC·SIMes)}(2)](2+) were synthesized from the reaction of [(dppf)(AuCl)(2)] with the appropriate ligand. Reaction of [(tht)AuCl] with one equivalent of IMes·COS or SIMes·COS yields [Au(SOC·IMes)(2)](+) and [Au(SOC·SIMes)(2)](+), respectively. The compounds [(Ph(3)P)Au(SCNPh·IMes)]PF(6), [(Cy(3)P)Au(SCNPh·IMes)]PF(6) and [Au(AgOTf)(2)(SCNPh·IMes)(2)]OTf were characterized crystallographically.  相似文献   

12.
A variety of gold(III) and gold(I) derivatives of 2-(2'-pyridyl)benzimidazole (pbiH) were synthesized and fully characterized and their antiproliferative properties evaluated in a representative ovarian cancer cell line. The complexes include the mononuclear species [(pbi)AuX(2)] (X = Cl, 1; OAc, 2), [(pbiH)AuCl] (3), [(pbiH)Au(PPh(3))][PF(6)] (4-PF(6)), and [(pbi)Au(L)] (L = PPh(3), 5; TPA, 6), and the binuclear gold(I)/gold(I) and gold(I)/gold(III) derivatives [(PPh(3))(2)Au(2)(μ(2)-pbi)][PF(6)] (10-PF(6)), [ClAu(μ(3)-pbi)AuCl(2)] (7),and [(PPh(3))Au(μ(3)-pbi)AuX(2)][PF(6)] (X = Cl, 8-PF(6); OAc, 9-PF(6)). The molecular structures of 6, 7, and 10-PF(6) were determined by X-ray diffraction analysis. The chemical behavior of these compounds in solution was analyzed both by cyclic voltammetry in DMF and absorption UV-vis spectroscopy in an aqueous buffer. Overall, the stability of these gold compounds was found to be acceptable for the cellular studies. For all complexes, relevant antiproliferative activities in vitro were documented against A2780 human ovarian carcinoma cells, either resistant or sensitive to cisplatin, with IC(50) values falling in the low micromolar or even in the nanomolar range. The investigated gold compounds were found to overcome resistance to cisplatin to a large degree. Results are interpreted and discussed in the frame of current knowledge on cytotoxic and antitumor gold compounds.  相似文献   

13.
The reactions of phenylaminobis(phosphonite), PhN{P(OC6H4OMe-o)2}2 (1) (PNP), with [AuCl(SMe2)] in appropriate ratios, afford the bi- and mononuclear complexes, [(AuCl)2(micro-PNP)] (2) and [(AuCl)(PNP)]2 (3) in good yield. Treatment of 2 with 2 equiv of AgX (X = OTf or ClO4) followed by the addition of 1 or 2,2'-bipyridine affords [Au2(micro-PNP)2](OTf)2 (4) and [Au2(C10H8N2)2(micro-PNP)](ClO4)2 (5), respectively. Similarly, the macrocycles [Au4(C4H4N2)2(micro-PNP)2](ClO4)4 (6), [Au4(C10H8N2)2(micro-PNP)2](ClO4)4 (7), and [Au6(C3H3N3)2(micro-PNP)3](ClO4)6 (8) are obtained by treating 2 with pyrazine, 4,4'-bipyridine, or 1,3,5-triazine in the presence of AgClO 4. The reaction of 1 with AgOTf in a 1:2 molar ratio produces [Ag2(micro-OTf)2(micro-PNP)] (9). The displacement of triflate ions in 9 by 1 leads to a disubstituted derivative, [Ag2(micro-PNP)3](OTf)2 (10). The equimolar reaction of 1 with AgClO4 in THF affords [Ag2(C4H8O)2(micro-PNP)2](ClO4)2 (11). Treatment of 1 with AgClO4 followed by the addition of 2,2'-bipyridine affords a discrete binuclear complex, [Ag2(C10H8N2)2(micro-PNP)](ClO4)2 (12), whereas similar reactions with 4,4'-bipyridine or pyrazine produce one-dimensional zigzag Ag (I) coordination polymers, [Ag2(C10H8N2)(micro-ClO4)(ClO4)(micro-PNP)]n (13) and [Ag2(C4H4N2)(micro-ClO4)(ClO4)(micro-PNP)]n (14) in good yield. The nature of metal-metal interactions in compounds 2, 4, 5, and 12 was analyzed theoretically by performing HF and CC calculations. The structures of the complexes 2, 4, 5, 7, 9, 12, and 14 are confirmed by single crystal X-ray diffraction studies.  相似文献   

14.
Plectonema boryanum UTEX 485, a filamentous cyanobacterium, has been reacted with aqueous Au(S(2)O(3))(2)(3)(-) and AuCl(4)(-) solutions ( approximately 400-550 mg/L Au) at 25-100 degrees C for up to 1 month and at 200 degrees C for 1 day. The interaction of cyanobacteria with aqueous Au(S(2)O(3))(2)(3)(-) promoted the precipitation of cubic (100) gold nanoparticles (<10-25 nm) at membrane vesicles and admixed with gold sulfide within cells and encrusted on the cyanobacteria, whereas reaction with AuCl(4)(-) resulted in the precipitation of octahedral (111) gold platelets ( approximately 1-10 microm) in solutions and nanoparticles of gold (<10 nm) within bacterial cells. Functional groups imaged by negative ion TOF-SIMS on (111) faces of the octahedral platelets were predominantly Cl and CN, with smaller amounts of C(2)H and CNO.  相似文献   

15.
The reaction of the phosphetane disulfide, FcP(S)S 2P(S)Fc ( 1) (Fc = (eta (5)-C 5H 5)Fe(eta (5)-C 5H 4)), the ferrocenyl analogue of the Lawesson reagent, with gold and palladium complexes leads to the unprecedented formation of phosphonodithioate ligands upon coordination to the metal centers. The reaction of 1 with gold complexes such as [AuCl(PR 3)] affords the species [Au{S 2P(OH)Fc}(PR 3)] (PR 3 = PPh 3 ( 2), PPh 2Me ( 3)), in which the phosphonodithioate ligand Fc(OH)PS 2 (-) has been formed. The same ligand is present in the compound [Au 2{S 2P(OH)Fc} 2].[N(PPh 3) 2]Cl ( 4), obtained by reaction of 1 with [N(PPh 3) 2][AuCl 2]. It crystallizes with one molecule of [N(PPh 3) 2]Cl, whereby complex 4 acts as an anion receptor and forms strong hydrogen bonds between the chloro and the hydroxyl groups. The reaction with palladium derivatives is different; two complexes, [Pd 2(S 4OP 2Fc 2) 2] ( 5) and [Pd 4Cl 4(S 4OP 2Fc 2) 2] ( 6), are obtained in molar ratio 2:1 and 1:1, respectively. In these complexes a new phosphonodithioate ligand is present and probably arises from the condensation of two molecules of Fc(OH)PS 2 (-). Complex 5 has also been characterized by X-ray methods.  相似文献   

16.
The reactivity of p-tert-butyltetrathiacalix[4]arene, [S4CalixBut(OH)4], and p-tert-butyltetrasulfonylcalix[4]arene, [(SO2)4CalixBut(OH)4], toward Mo(PMe3)5H2, Mo(PMe3)6, and W(PMe3)4(eta2-CH2PMe2)H has been used to synthesize a series of mononuclear molybdenum and tungsten calixarene compounds that feature both coordinatively saturated and unsaturated metal centers, such as [S4CalixBut(OH)2(O)2]M(PMe3)3H2 (M = Mo, W), [(SO2)4CalixBut(OH)2(O)2]M(PMe3)3H2, [S4CalixBut(OH)2(O)2]Mo(PMe3)3, [(SO2)4CalixBut(OH)2(O)2]Mo(PMe3)3, and [(SO2)4CalixBut(OH)(O)3]M(PMe3)3H. Comparison with the related {[CalixBut(OH)2(O)2]M} complexes indicates that the chemistry of the system is strongly influenced by the nature of the calixarene linker, that is, CH2, S, and SO2. For example, in contrast to the methylene-bridged calixarene system, the thiacalixarene and sulfonylcalixarene systems readily coordinate a second metal center to form homo- and heterodinuclear complexes, namely {[S4CalixBut(O)4]}[M(PMe3)3H2]2, {[(SO2)4CalixBut(O)4]}[Mo(PMe3)3H2]2 and {[S4CalixBut(O)4]}[Mo(PMe3)3H2][W(PMe3)3H2]. Of most interest, incorporation of nickel into [S4CalixBut(OH)2(O)2]M(PMe3)3H2 using Ni(PMe3)4 results in cleavage of a C- bond to give [(SArButOH)(SArButO)3][M(PMe3)3H2][Ni(PMe3)2], an observation that is of relevance to the role that nickel plays in hydrodesulfurization catalysis.  相似文献   

17.
Treatment of a cobalt-containing diphosphine ligand, [[mu-P,P-PPh2CH2PPh2]Co2(CO)4[mu-PPh2C[triple bond]CPPh2]] 1 with metal complexes W(CO)6, Ru3(CO)12, AuCl(tht)(tht = tetrahydrothiophene) and (COD)PdCl2(COD = 1,5-cycloctadiene) gave 1-chelated metal complexes [(1)W(CO)4], [(mu-1)Ru3(CO)10] 4, [(1)(AuCl)2] 5 and [(1)PdCl2] 6, respectively. All these compounds were characterized by spectroscopic means whereas 3, 4 and 6 were also studied by X-ray diffraction. These compounds display chelating and bridging modes of metal-phosphine complexation. Variable-temperature 1H and 31P NMR experiments were carried out for 3-6 and revealed that the fluxional behavior of each individual bridging dppm fragment was affected greatly by the bite angle of 1 in each metal complex. Suzuki cross-coupling reactions were satisfactorily catalyzed by under mild conditions. The reactions of aryl halides or iodothiophenes with chloroform and alkali in biphasic solution utilizing a catalytic amount of result into the formation of benzoic and thiophenic acids, respectively.  相似文献   

18.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

19.
A straightforward procedure for the formation of mixed metal Au/Sn clusters is presented: reaction of the heteroborate [SnB11H11]2- with phosphine gold electrophiles gave the clusters [Bu3NH]3[{(Et3P)Au(SnB11H11)}3] and [Bu3MeN]4[{(dppm)Au2(SnB11H11)2}2], which were characterised by X-ray diffraction.  相似文献   

20.
Deconstructing the tridentate (triphos)Pt(II) first-generation catalysts into mixed diphosphine/monophosphine combinations (P(2)P) has led to new, more active catalysts for the cycloisomerization of 1,6-, and 1,7-dienes into bicyclo-[3.1.0] and -[4.1.0] products. When the diphosphine was the small bite angle dppm, reaction rates were approximately 20-fold faster than with triphos, although reaction rates and diastereoselectivities were also sensitive to the monophosphine (PMe(3) being optimal for rate, PPh(3) being optimal for selectivity). When the diphosphine was xyl-BINAP or SEGPHOS, the catalysts were enantioselective, and enantio-ratios up to 98:2 were observed. Both sets of catalysts showed enhanced functional group tolerance in comparison to the original (triphos)Pt(2+) catalyst. X-ray structures for both precatalysts are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号