首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complete (n,r)-arcs in PG(k−1,q) and projective (n,k,nr) q -codes that admit no projective extensions are equivalent objects. We show that projective codes of reasonable length admit only projective extensions. Thus, we are able to prove the maximality of many known linear codes. At the same time our results sharply limit the possibilities for constructing long non-linear codes. We also show that certain short linear codes are maximal. The methods here may be just as interesting as the results. They are based on the Bruen–Silverman model of linear codes (see Alderson TL (2002) PhD. Thesis, University of Western Ontario; Alderson TL (to appear) J Combin Theory Ser A; Bruen AA, Silverman R (1988) Geom Dedicata 28(1): 31–43; Silverman R (1960) Can J Math 12: 158–176) as well as the theory of Rédei blocking sets first introduced in Bruen AA, Levinger B (1973) Can J Math 25: 1060–1065.   相似文献   

2.
Hill and Kolev give a large class of q-ary linear codes meeting the Griesmer bound, which are called codes of Belov type (Hill and Kolev, Chapman Hall/CRC Research Notes in Mathematics 403, pp. 127–152, 1999). In this article, we prove that there are no linear codes meeting the Griesmer bound for values of d close to those for codes of Belov type. So we conclude that the lower bounds of d of codes of Belov type are sharp. We give a large class of length optimal codes with n q (k, d) = g q (k, d) + 1.  相似文献   

3.
The famous Dembowski-Wagner theorem gives various characterizations of the classical geometric 2-design PG n-1(n, q) among all 2-designs with the same parameters. One of the characterizations requires that all lines have size q + 1. It was conjectured [2] that this is also true for the designs PG d (n, q) with 2 ≤ d ≤  n − 1. We establish this conjecture, hereby improving various previous results.  相似文献   

4.
Belov, Logachev and Sandimirov construct linear codes of minimum distance d for roughly 1/q k/2 of the values of dq k-1. In this article we shall prove that, for q = p prime and roughly \frac38{\frac{3}{8}}-th’s of the values of d < q k-1, there is no linear code meeting the Griesmer bound. This result uses Blokhuis’ theorem on the size of a t-fold blocking set in PG(2, p), p prime, which we generalise to higher dimensions. We also give more general lower bounds on the size of a t-fold blocking set in PG(δ, q), for arbitrary q and δ ≥ 3. It is known that from a linear code of dimension k with minimum distance dq k-1 that meets the Griesmer bound one can construct a t-fold blocking set of PG(k−1, q). Here, we calculate explicit formulas relating t and d. Finally we show, using the generalised version of Blokhuis’ theorem, that nearly all linear codes over \mathbb Fp{{\mathbb F}_p} of dimension k with minimum distance dq k-1, which meet the Griesmer bound, have codewords of weight at least d + p in subcodes, which contain codewords satisfying certain hypotheses on their supports.  相似文献   

5.
We prove that every polarity of PG(2k − 1,q), where k≥ 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG k (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.   相似文献   

6.
We first note that each element of a symplectic spread of PG(2n − 1, 2 r ) either intersects a suitable nonsingular quadric in a subspace of dimension n − 2 or is contained in it, then we prove that this property characterises symplectic spreads of PG(2n − 1, 2 r ). As an application, we show that a translation plane of order q n , q even, with kernel containing GF(q), is defined by a symplectic spread if and only if it contains a maximal arc of the type constructed by Thas (Europ J Combin 1:189–192, 1980).  相似文献   

7.
Let [n, k, d; q]-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q). Let d8(n, k) be the maximum possible minimum Hamming distance of a linear [n, k, d; 8]-code for given values of n and k. In this paper, eighteen new linear codes over GF(8) are constructed which improve the table of d8(n, k) by Brouwer.  相似文献   

8.
In this paper, we determine the smallest lengths of linear codes with some minimum distances. We construct a [g q (k, d) + 1, k, d] q code for sq k-1 − sq k-2 − q s  − q 2 + 1 ≤ dsq k-1 − sq k-2 − q s with 3 ≤ sk − 2 and qs + 1. Then we get n q (k, d) = g q (k, d) + 1 for (k − 2)q k-1 − (k − 1)q k-2 − q 2 + 1 ≤ d ≤ (k − 2)q k-1 − (k − 1)q k-2, k ≥ 6, q ≥ 2k − 3; and sq k-1 − sq k-2 − q s  − q + 1 ≤ dsq k-1 − sq k-2 − q s , s ≥ 2, k ≥ 2s + 1 and q ≥ 2s − 1. This work was partially supported by the Com2MaC-SRC/ERC program of MOST/KOSEF (grant # R11-1999-054) and was partially supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-2005-214-C00175).  相似文献   

9.
New subgeometry partitions of PG(n − 1, q m ) by subgeometries isomorphic to PG(n − 1, q) are constructed.   相似文献   

10.
Let Ω and be a subset of Σ = PG(2n−1,q) and a subset of PG(2n,q) respectively, with Σ ⊂ PG(2n,q) and . Denote by K the cone of vertex Ω and base and consider the point set B defined by
in the André, Bruck-Bose representation of PG(2,qn) in PG(2n,q) associated to a regular spread of PG(2n−1,q). We are interested in finding conditions on and Ω in order to force the set B to be a minimal blocking set in PG(2,qn) . Our interest is motivated by the following observation. Assume a Property α of the pair (Ω, ) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, ) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of PG(2n−1,q) and a blocking set in a subspace of PG(2n,q); both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2,qn), generalizing the main constructions of [14]. For example, for q = 3h, we get large blocking sets of size qn + 2 + 1 (n≥ 5) and of size greater than qn+2 + qn−6 (n≥ 6). As an application, a characterization of Buekenhout-Metz unitals in PG(2,q2k) is also given.  相似文献   

11.
For any divisor k of q 4−1, the elements of a group of k th-roots of unity can be viewed as a cyclic point set C k in PG(4,q). An interesting problem, connected to the theory of BCH codes, is to determine the spectrum A(q) of maximal divisors k of q 4−1 for which C k is a cap. Recently, Bierbrauer and Edel [Edel and Bierbrauer (2004) Finite Fields Appl 10:168–182] have proved that 3(q 2 + 1)∈A(q) provided that q is an even non-square. In this paper, the odd order case is investigated. It is proved that the only integer m for which m(q 2 + 1)∈A(q) is m = 2 for q ≡ 3 (mod 4), m = 1 for q ≡ 1 (mod 4). It is also shown that when q ≡ 3 (mod 4), the cap is complete.   相似文献   

12.
In this paper, we study the p-ary linear code C(PG(n,q)), q = p h , p prime, h ≥ 1, generated by the incidence matrix of points and hyperplanes of a Desarguesian projective space PG(n,q), and its dual code. We link the codewords of small weight of this code to blocking sets with respect to lines in PG(n,q) and we exclude all possible codewords arising from small linear blocking sets. We also look at the dual code of C(PG(n,q)) and we prove that finding the minimum weight of the dual code can be reduced to finding the minimum weight of the dual code of points and lines in PG(2,q). We present an improved upper bound on this minimum weight and we show that we can drop the divisibility condition on the weight of the codewords in Sachar’s lower bound (Geom Dedicata 8:407–415, 1979). G. Van de Voorde’s research was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).  相似文献   

13.
The paper deals with the structure of intermediate subgroups of the general linear group GL(n, k) of degree n over a field k of odd characteristic that contain a nonsplit maximal torus related to a radical extension of degree n of the ground field k. The structure of ideal nets over a ring that determine the structure of intermediate subgroups containinga transvection is given. Let K = k( n?{d} ) K = k\left( {\sqrt[n]{d}} \right) be a radical degree-n extension of a field k of odd characteristic, and let T =(d) be a nonsplit maximal torus, which is the image of the multiplicative group of the field K under the regular embedding in G =GL(n, k). In the paper, the structure of intermediate subgroups H, THG, that contain a transvection is studied. The elements of the matrices in the torus T = T (d) generate a subring R(d) in the field k.Let R be an intermediate subring, R(d) ⊆ Rk, dR. Let σR denote the net in which the ideal dR stands on the principal diagonal and above it and all entries of which beneath the principal diagonal are equal to R. Let σR denote the net in which all positions on the principal diagonal and beneath it are occupied by R and all entries above the principal diagonal are equal to dR. Let ER) be the subgroup generated by all transvections from the net group GR). In the paper it is proved that the product TER) is a group (and thus an intermediate subgroup). If the net σ associated with an intermediate subgroup H coincides with σR,then TER) ≤ HNR),where NR) is the normalizer of the elementary net group ER) in G. For the normalizer NR),the formula NR)= TGR) holds. In particular, this result enables one to describe the maximal intermediate subgroups. Bibliography: 13 titles.  相似文献   

14.
We consider a variant of Heilbronn’s triangle problem by investigating for a fixed dimension d≥2 and for integers k≥2 with kd distributions of n points in the d-dimensional unit cube [0,1] d , such that the minimum volume of the simplices, which are determined by (k+1) of these n points is as large as possible. Denoting by Δ k,d (n), the supremum of this minimum volume over all distributions of n points in [0,1] d , we show that c k,d ⋅(log n)1/(dk+1)/n k/(dk+1)Δ k,d (n)≤c k,d ′/n k/d for fixed 2≤kd, and, moreover, for odd integers k≥1, we show the upper bound Δ k,d (n)≤c k,d ″/n k/d+(k−1)/(2d(d−1)), where c k,d ,c k,d ′,c k,d ″>0 are constants. A preliminary version of this paper appeared in COCOON ’05.  相似文献   

15.
In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method to construct Rédei type k-blocking sets in PG(n, q) is to construct a cone having as base a Rédei type k-blocking set in a subspace of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which are not cones, exist. We give in this article a condition on the parameters of a Rédei type k-blocking set of PG(n, q = p h ), p a prime power, which guarantees that the Rédei type k-blocking set is a cone. This condition is sharp. We also show that small Rédei type k-blocking sets are linear.  相似文献   

16.
An (n, d) set in the projective geometry PG(r, q) is a set of n points, no d of which are dependent. The packing problem is that of finding n(r, q, d), the largest size of an (n, d) set in PG(r, q). The packing problem for PG(r, 3) is considered. All of the values of n(r, 3, d) for r ? 5 are known. New results for r = 6 are n(6, 3, 5) = 14 and 20 ? n(6, 3, 4) ? 31. In general, upper bounds on n(r, q, d) are determined using a slightly improved sphere-packing bound, the linear programming approach of coding theory, and an orthogonal (n, d) set with the known extremal values of n(r, q, d)—values when r and d are close to each other. The BCH constructions and computer searches are used to give lower bounds. The current situation for the packing problem for PG(r, 3) with r ? 15 is summarized in a final table.  相似文献   

17.
An (n, d, k)-mapping f is a mapping from binary vectors of length n to permutations of length n + k such that for all x, y {0,1}n, dH (f(x), f(y)) ≥ dH (x, y) + d, if dH (x, y) ≤ (n + k) − d and dH (f(x), f(y)) = n + k, if dH (x, y) > (n + k) − d. In this paper, we construct an (n,3,2)-mapping for any positive integer n ≥ 6. An (n, r)-permutation array is a permutation array of length n and any two permutations of which have Hamming distance at least r. Let P(n, r) denote the maximum size of an (n, r)-permutation array and A(n, r) denote the same setting for binary codes. Applying (n,3,2)-mappings to the design of permutation array, we can construct an efficient permutation array (easy to encode and decode) with better code rate than previous results [Chang (2005). IEEE Trans inf theory 51:359–365, Chang et al. (2003). IEEE Trans Inf Theory 49:1054–1059; Huang et al. (submitted)]. More precisely, we obtain that, for n ≥ 8, P(n, r) ≥ A(n − 2, r − 3) > A(n − 1,r − 2) = A(n, r − 1) when n is even and P(n, r) ≥ A(n − 2, r − 3) = A(n − 1, r − 2) > A(n, r − 1) when n is odd. This improves the best bound A(n − 1,r − 2) so far [Huang et al. (submitted)] for n ≥ 8. The work was supported in part by the National Science Council of Taiwan under contract NSC-93-2213-E-009-117  相似文献   

18.
The dimension of a combinatorial design ${{\mathcal D}}$ over a finite field F = GF(q) was defined in (Tonchev, Des Codes Cryptogr 17:121–128, 1999) as the minimum dimension of a linear code over F that contains the blocks of ${{\mathcal D}}$ as supports of nonzero codewords. There it was proved that, for any prime power q and any integer n ≥ 2, the dimension over F of a design ${{\mathcal D}}$ that has the same parameters as the complement of a classical point-hyperplane design PG n-1(n, q) or AG n-1(n, q) is greater than or equal to n + 1, with equality if and only if ${{\mathcal D}}$ is isomorphic to the complement of the classical design. It is the aim of the present paper to generalize this Hamada type characterization of the classical point-hyperplane designs in terms of associated codes over F = GF(q) to a characterization of all classical geometric designs PG d (n, q), where 1 ≤ dn ? 1, in terms of associated codes defined over some extension field E?=?GF(q t ) of F. In the affine case, we conjecture an analogous result and reduce this to a purely geometric conjecture concerning the embedding of simple designs with the parameters of AG d (n, q) into PG(n, q). We settle this problem in the affirmative and thus obtain a Hamada type characterization of AG d (n, q) for d = 1 and for d > (n ? 2)/2.  相似文献   

19.
The study of the intersection of two Baer subgeometries of PG(n, q), q a square, started in Bose et al. (Utilitas Math 17, 65–77, 1980); Bruen (Arch Math 39(3), 285–288, (1982). Later, in Svéd (Baer subspaces in the n-dimensional projective space. Springer-Verlag) and Jagos et al. (Acta Sci Math 69(1–2), 419–429, 2003), the structure of the intersection of two Baer subgeometries of PG(n, q) has been completely determined. In this paper, generalizing the previous results, we determine all possible intersection configurations of any two subgeometries of PG(n, q).   相似文献   

20.
Let [n,k,d]q-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q). In this paper, the nonexistence of [105,6,68]3 and [230,6,152]3 codes is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号