首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A range of bis-facial tridentate chelate complexes of type [Fe((R-pz)(3)CH)((3,5-Me(2)pz)(3)CH)](BF(4))(2) has been characterised that contain two different tris-pyrazolylmethane ligands, with variations in R being H (complex crystallised as polymorphs and ) and 4-Me (), as well as R = H with a CH(2)OH arm off the methane carbon (). A tris(pyridyl)methane analogue is also described (). The tris(3,5-dimethylpyrazolyl)methane co-ligand (3,5-Me(2)pz), and the BF(4)(-) counterion, are constant throughout. The spin-crossover properties of these Fe(ii) d(6) compounds have been probed in detail by variable temperature magnetic, M?ssbauer spectral and crystallographic methods. The effects of distortions from octahedral symmetry around the Fe(ii) centres, of crystal solvate molecules (1.5 MeCN in and 2 MeCN in ) and of supramolecular/crystal packing, are discussed. In the case of , subtle twisting of pyrazole rings occurs, as a function of temperature, that has a greater effect upon the relative positions of the Fe(ii) chelate molecules in polymorph than in polymorph ; this is thought to drive the cooperativity differences observed in the magnetism of the polymorphs. Comparisons are also made between to and their homoleptic, parent [Fe(L)(2)] (2+) materials. The complexes were screened for the LIESST (light induced excited spin state trapping) effect by measurements of diffuse absorption spectra on the surface of powder samples, at different temperatures. One example, , showed a 2-step thermal spin crossover transition and it was probed in detail for its photomagnetic features. The T(LIESST) and T(1/2) values for did not obey an empirical relationship, T(LIESST) = 150 - 0.3T(1/2) followed by many Fe(ii)(N-donor)(6) crossover compounds of the bis-tridentate (meridional) type, and possible reasons for this are discussed.  相似文献   

2.
Three members of the family of trigonal bipyramidal (TBP) complexes of general formula [M(tmphen)(2)](3)[M'(CN)(6)](2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) or [M(3)M'(2)], which are known to exhibit thermally induced spin crossover and charge transfer, have been investigated for optical and photomagnetic properties. The light-induced excited spin-state trapping (LIESST) effect found in classical spin crossover compounds, such as [Fe(phen)(2)(NCS)(2)], was explored for the [Fe(3)Fe(2)] and [Fe(3)Co(2)] compounds. Similarly, inspired by the light-induced charge-transfer properties of K(0.2)Co(1.4)[Fe(CN)(6)]·6.9H(2)O and related Prussian blue materials, the possibility of photo-induced magnetic changes was investigated for the [Co(3)Fe(2)] TBP complex. Optical reflectivity and magnetic susceptibility measurements were used to evaluate the photoactivity of these compounds. A comparison of these data before and after light irradiation demonstrates that (i) the spin crossover of the Fe(II) centers in the [Fe(3)Fe(2)] and [Fe(3)Co(2)] analogues and the (ii) charge transfer events in the [Co(3)Fe(2)] complex occur with temperature and irradiation. In addition, photomagnetic behavior is exhibited by all three compounds. The photo-conversion efficiency has been estimated at 20% of photo-induced high spin Fe(II) centers in [Fe(3)Co(2)], 30% of paramagnetic Co(II)-Fe(III) pairs in [Co(3)Fe(2)], and less than 2% of photo-induced high spin Fe(II) centers in [Fe(3)Fe(2)].  相似文献   

3.
Five mononuclear spin crossover iron(II) bis-meridional ligand complexes of the general formula [Fe(L)(2)](X)(2).solvent, have been synthesized, where X = BF(4)- or ClO(4)-; L = 2-(1-pyridin-2-ylmethyl-1H-pyrazol-3-yl)-pyrazine (picpzpz) or 2-(3-(2-pyridyl)pyrazol-1-ylmethyl)pyridine) (picpypz); solvent = MeOH or EtOH. The magnetic and structural consequences of systematic variation of meridional ligand, solvent, and anion, including a desolvated species, have been investigated. The complex [Fe(picpzpz)(2)](BF(4))(2).MeOH, 1.MeOH, displays several unique properties including a two-step spin transition with a gradual higher-temperature step ((1)T(1/2) = 197 K) and an abrupt low-temperature step with hysteresis ((2)T(1/2) = 91/98 K) and a metastable intermediate spin state below 70 K with quench-cooling. Removal of the solvent methanol results in the loss of the abrupt step and associated hysteresis (T(1/2) = 150 K). The complexes [Fe(picpzpz)(2)](BF(4))(2).EtOH (1.EtOH), [Fe(picpzpz)(2)](ClO(4))(2).MeOH (2.MeOH), [Fe(picpzpz)(2)](ClO(4))(2).EtOH (2.EtOH), and [Fe(picpypz)(2)](BF(4))(2).MeOH (3.MeOH) all show gradual one-step spin transitions with T(1/2) values in the range 210-250 K. Photomagnetic LIESST measurements on 1.MeOH reveal a near-quantitative excitation of high-spin sites and a unique two-step relaxation process related to the two-step thermal spin transition ((1)T(LIESST) = 49 K and (2)T(LIESST) = 70 K). The structural consequences of the unusual spin transition displayed by 1.MeOH have been investigated by single-crystal X-ray diffraction structural analyses between 25 and 293 K. Detailed characterization of the unit cell parameter evolution vs temperature reflects both the gradual high-temperature step and abrupt low-temperature step, including the thermal hysteresis, observed magnetically.  相似文献   

4.
In addition to the generally observed LIESST phenomenon, polymorph D of trans-[Fe(II)(abpt)(2)(NCS)(2)] exhibits a long-lived photo-induced metastable state through linkage isomerization accompanied with a spin crossover transition, which is stable up to 108 K.  相似文献   

5.
The thermal and light-induced spin transitions in [Fe(x)Zn(1-x)(phen)2(NCS)2] (phen = 1,10-phenantholine) have been investigated by magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. These complexes display a thermal spin transition and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. For each compound, the thermal spin transition temperature, T1/2, and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T1/2 decreases with the metal dilution while T(LIESST) remains unchanged. This behaviour is discussed on the basis of the kinetic study governing the photo-induced back conversion.  相似文献   

6.
Four new dipyridylamino-substituted s-triazine ligands DBB (N(2),N(2),N(4),N(4)-tetrabenzyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DDB (N(2),N(2),N(4),N(4)-tetrabutyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DCCl (6-chloro-N(2),N(2)-dicyclohexyl-N(4),N(4)-di(pyridin-2-yl)-1,3,5-triazine-2,4-diamine) and DDT (N(2),N(2),N(4),N(4)-tetraphenyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), have been incorporated into eight new, 0D Fe(II) compounds of type [Fe(II)(NCX)(2)(L)(2)]·Solvent (where NCX = NCS(-), NCSe(-) or N(CN)(2)(-)). The polymorphic compounds α-trans-[Fe(II)(NCS)(2)(DBB)(2)] (1) and β-trans-[Fe(II)(NCS)(2)(DBB)(2)] (2) display, respectively, a relatively abrupt, complete, one-step spin transition with T(?) ~ 170 K, and a more gradual, complete, one-step spin transition with T(?) ~ 300 K. Gradual, one-step spin transitions are observed for trans-[Fe(II)(N(CN)(2))(2)(DBB)(2)]·2CH(3)CH(2)OH (3) and trans-[Fe(II)(NCSe)(2)(DCCl)(2)]·2CH(3)OH (6) with T(?) ~ 280 K for both, while the one-step spin transition observed for a desolvated sample of trans-[Fe(II)(NCSe)(2)(DDB)(2)]·2CH(3)OH (4) is relatively abrupt, showing hysteresis with T(?↑) = 285 K and T(?↓) = 275 K. The compounds cis-[Fe(II)(NCS)(2)(DDB)(2)] (5) and trans-[Fe(II)(NCS)(2)(DDT)(2)]·4CH(2)Cl(2) (7) remain high spin, while structural data on trans-[Fe(II)(NCSe)(2)(DDT)(2)]·4CH(2)Cl(2) (8) suggests a spin transition at low temperatures. It is likely that distortion of the Fe(II)N(6) octahedron, intermolecular interactions and molecular conformation are crucial in deciding both the T(?) and abruptness of the spin transition for these species, although the nature of their influence varies. Variable temperature powder X-ray diffraction measurements on the polymorphs 1 and 2 reveal anisotropy in the unit cell parameters as the spin transition occurs.  相似文献   

7.
Two new spin crossover complexes [FeL(py)(2)] (1) and [FeL(DMAP)(2)] (2) with L being a tetradentate N(2)O(2)(2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N',O(2),O(2)'], py = pyridine and DMAP = p-dimethylaminopyridine have been investigated using temperature-dependent susceptibility and thermogravimetric and photomagnetic measurements as well as M?ssbauer spectroscopy and X-ray structure analysis. Both complexes show a cooperative spin transition with an approximately 9 K wide thermal hysteresis loop in the case of 2 (T(1/2) upward arrow = 183 K and T(1/2) downward arrow = 174 K) and an approximately 2 K wide thermal hysteresis loop in the case of the pyridine diadduct 1 (T(1/2) upward arrow = 191 K and T(1/2) downward arrow = 189 K). The spin transition was additionally followed by different temperature-scanning calorimetry and M?ssbauer spectroscopy for 2, and a good agreement for the transition temperatures obtained with the different methods was found. Results from X-ray structure analysis indicate that the cooperative interactions are due to elastic interactions in both compounds. They are more pronounced in the case of 2 with very short intermolecular iron-iron distances of 7.2 A and several intense C-C contacts. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bit of the equatorial ligand, from 108 degrees in the high-spin state to 90 degrees in the low-spin state. The reflectivity measurements of both compounds give at low temperature indication that at the sample surface the light-induced excited spin state trapping (LIESST) effect occurs. In bulk condition using a SQUID magnetometer the complex 2 displays some photomagnetic properties with an photoexcitation level of 60% and a T(LIESST) value of 53 K.  相似文献   

8.
Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)↑ = 122 K, T(1/2)↓ = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied.  相似文献   

9.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

10.
The syntheses, structures, and magnetic properties of the compounds of formula [Fe (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].4H 2O.C 3H 7NO ( 1) and [In (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].3H 2O.CH 3OH (2) are reported. The structure presents a homometallic 2D honeycomb anionic layer formed by Mn (II) ions linked through oxalate ligands and a cationic double layer of [Fe(sal 2trien)] (+) or [In(sal 2trien)] (+) complexes intercalated between the 2D oxalate network. The magnetic properties and M?ssbauer spectroscopy of 1 indicate the coexistence of a magnetic ordering of the Mn(II) oxalate network that behaves as a weak ferromagnet and a gradual spin crossover of the intercalated [Fe(sal 2trien)] (+) complexes.  相似文献   

11.
The first structural data for [Fe(phen)(2)(NCSe)(2)] (obtained using the extraction method of sample preparation) in its high-spin, low-spin and LIESST induced metastable high-spin states have been recorded using synchrotron radiation single crystal diffraction. The space group for all of the spin states was found to be Pbcn. On cooling from the high-spin state (HS-1) at 292 K through the spin crossover at about 235 K to the low-spin state at 100 K (LS-1) the iron coordination environment changed to a more regular octahedral geometry and the Fe-N bond lengths decreased by 0.216 and 0.196 A (Fe-N(phen)) and 0.147 A (Fe-N(CSe)). When the low-spin state was illuminated with visible light at about 26 K, the structure of this LIESST induced metastable high-spin state (HS-2) was very similar to that of HS-1 with regards to the Fe-phen bond lengths, but there were some differences in the bond lengths in the Fe-NCSe unit between HS-1 and HS-2. When HS-2 was warmed in the dark to 50 K, the resultant low-spin state (LS-2) had an essentially identical structure to LS-1. In all spin states, all of the shortest intermolecular contacts (in terms of van der Waals radii) involved the NCSe ligand, which may be important in describing the cooperativity in the solid state. The quality of the samples was confirmed by magnetic susceptibility and IR measurements.  相似文献   

12.
Two luminescent coordination compounds, [Cu(Pz)]3 (1) and [Cu2(Bpz)]n (2), were isolated from solvothermal reactions of Cu(NO3)2 with 3,5-dimethylpyrazole (HPz) and 3,3',5,5'-tetra-methyl-4,4'-bipyrazole (H2Bpz) respectively in the presence of NH3, of which 1 was revealed to be a planar trimer and 2 a three-dimensional framework, presenting a rare 3-connected binodal (6(2).10)(6.10(2)) topology and eight-fold interpenetration.  相似文献   

13.
Compounds [Fe(tzpy)(3)](BF(4))(2) (1), [Fe(tzpy)(2)(NCS)(2)].S (S = 2CHCl(3) (2), H(2)O (3)), and [Fe(tzpy)(2)(NCSe)(2)] (4) (tzpy is 3-(2-pyridyl)[1,2,3]triazolo[1,5-a]pyridine) have been synthesized and characterized. 1 crystallizes in the monoclinic noncentrosymmetric system, Cc space group, Z = 4, with a = 11.4680(6) A, b = 27.449(2) A, c = 12.4510(8) A, beta = 108.860(5) degrees, V = 3709.0(4) A(3), and T = 293(2) K. The structure consists of mononuclear [Fe(tzpy)(3)](2+) diamagnetic species, which stack via pi-interactions. Disordered BF(4)(-) anions fill the voids generated by complex cations. 2 crystallizes in the triclinic system, P one macro space group, Z = 1, with a = 8.3340(4) A, b = 8.6520(4) A, c = 11.6890(6) A, alpha = 89.113(2) degrees, beta = 81.612(2) degrees, gamma = 77.803(2) degrees, V = 814.90(7) A(3), and T = 293(2) K. The structure consists of mononuclear [Fe(tzpy)(2)(NCS)(2)] neutral species, which interact each other via pi-staking defining layers separated by two-dimensional arrays of CHCl(3). The average Fe-N bond distance, 2.176(3) A, corresponds to what is expected for an iron(II) ion in the high-spin state. Compounds 2-4 undergo thermal-driven spin conversion. The regular solution model was applied to account for the corresponding to thermodynamic parameters. The intermolecular interaction parameter, the characteristic temperature, and the enthalpy and entropy changes associated with the spin conversion were estimated as Gamma = 0.86 (2), 0.89 (3), and 3.79 (4) kJ mol(-1), T(1/2) = 75 (2), 118 (3), and 251 K (4), Delta H = 3.67 (2) and 4.08 (3) kJ mol(-1), and Delta S = 34 (2) and 34.5 (3) J K(-1) mol(-1). Delta H = 8.75 kJ mol(-1) and Delta S = 34.8 J K(-1) mol(-1) were estimated from calorimetric measurements and used as fixed parameters for 4. A quantitative light-induced excited spin state trapping (LIESST) effect was observed for 3, and the high-spin to low-spin relaxation was studied in the temperature region 20-63 K.  相似文献   

14.
High-level ab initio calculations using the CASPT2 method and extensive basis sets were performed on the energy differences of the high-[(5)T(2g):t(2g) (4)e(g) (2)] and low-[(1)A(1g):t(2g) (6)] spin states of the pseudo-octahedral Fe(II) complexes [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), and [Fe(bpy)(3)](2+). The results are compared to the results obtained from density functional theory calculations with the generalized gradient approximation functional BP86 and two hybrid functionals B3LYP and PBE0, and serve as a calibration for the latter methods. We find that large basis set CASPT2 calculations may provide results for the high-spin/low-spin splitting DeltaE(HL) that are accurate to within 1000 cm(-1), provided they are based on an adequately large CAS[10,12] reference wave function. The latter condition was found to be much more stringent for [Fe(bpy)(3)](2+) than for the other two complexes. Our "best" results for DeltaE(HL) (including a zero-point energy correction) are -17 690 cm(-1) for [Fe(H(2)O)(6)](2+), -8389 cm(-1) for [Fe(NH(3))(6)](2+), and 3820 cm(-1) for [Fe(bpy)(3)](2+).  相似文献   

15.
The molecular solid [Fe(II)L(2)](ClO(4))(2).CH(3)CN where L is 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine provides a stable high-spin (HS) state at low temperature. Photoexcitation and subsequent relaxation have been studied using light-induced excited state spin trapping [LIESST(H --> L)] in the 700-850 nm range, determination of T(LIESST), relaxation curves at different temperatures, and temperature dependence of the light-induced spin equilibrium under constant irradiation. The measured photoinduced population of the metastable low-spin (LS) state (<30%) was drastically limited by the concomitant L --> H photoprocess. The absence of static light-induced thermal hysteresis and the stretched exponential shape of the relaxation curves respectively revealed the absence of sizable interactions and a large spreading of the activation energies attributed to the ligand flexibility. The whole data set has been simulated using a linear rate equation, with a simplified correction for the bulk extinction of light in the powder sample.  相似文献   

16.
The syntheses, crystal structures, and magnetic characterizations of three new hexanuclear iron(III) compounds are reported. Known [Fe(6)O(2)(OH)(2)(O(2)CBu(t))(10)(hep)(2)] (1) is converted to new [Fe(6)O(2)(OH)(O(2)CBu(t))(9)(hep)(4)] (3) when treated with an excess of 2-(2-hydroxyethyl)-pyridine (hepH). Similarly, the new compound [Fe(6)O(2)(OH)(2)(O(2)CPh)(10)(hep)(2)] (2), obtained from the reaction of [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)] with hepH, is converted to [Fe(6)O(2)(OH)(O(2)CPh)(9)(hep)(4)] (4) when treated with an excess of hepH. This can be reversed by recrystallization from MeCN. The cores of the four Fe(6) complexes all comprise two triangular [Fe(3)(mu(3)-O)(O(2)CR)(3)(hep)](+3) units connected at two of their apices by two sets of bridging ligands. However, 1 and 2 differ slightly from 3 and 4 in the precise way the two Fe(3) units are linked together. In 1 and 2, the two sets of bridging ligands are identical, consisting of one mu-hydroxo and two mu-carboxylate groups bridging each Fe(2) pair, i.e., a (mu-OH(-))(mu-O(2)CR(-))(2) set. In contrast, 3 and 4 have two different sets of bridging ligands, a (mu-OH(-))(mu-O(2)CR(-))(2) set as in 1 and 2, and a (mu-OR(-))(2)(mu-O(2)CR(-)) set, where RO(-) refers to the alkoxide arm of the hep(-) chelate. Variable-field and -temperature dc magnetization measurements establish that 1 and 2 have S = 5 ground states and significant and positive zero-field splitting parameters (D), whereas 3 and 4 have S = 0 ground states. This dramatic difference of 10 unpaired electrons in the ground state S values for near-isomeric compounds demonstrates an acute sensitivity of the magnetic properties to small structural changes. The factors leading to this have been quantitatively analyzed. The semiempirical method ZILSH, based on unrestricted molecular orbital calculations, was used to obtain initial estimates of the Fe(2) pairwise exchange interaction constants (J). These calculated values were then improved by fitting the experimental susceptibility versus T data, using a genetic algorithm approach. The final J values were then employed to rationalize the observed magnetic properties as a function of the core topologies and the presence of spin frustration effects. The large difference in ground state spin value was identified as resulting from a single structural difference between the two types of complexes, the different relative dispositions (cis vs trans) of two frustrated exchange pathways. In addition, use of the structural information and corresponding J values allowed a magnetostructural correlation to be established between the J values and both the Fe-O bond distances and the Fe-O-Fe angles at the bridging ligands.  相似文献   

17.
A modified tris(pyrazolylborate) ligand has been prepared in two steps. First, reaction of triisopropylborate with allylmagnesium bromide and further treatment with benzoyl chloride gave CH(2) = CHCH(2)B(O(i)Pr), which was then reacted with potassium pyrazolate and pyrazole to give the compound K[CH(2) = CHCH(2)Bpz(3)]. The new allyl-containing scorpionate anion of acts as a bi- or tri-dentate ligand, as shown by the mononuclear complexes [CH(2) = CHCH(2)Bpz(3)M(LL)] (M = Rh, LL = nbd, ; LL = tfb, ; LL = (CO)(PPh(3)), ; M = Ir, LL = cod, ), obtained from reactions of the chlorido-bridged dinuclear complexes [{M(mu-Cl)(LL)}(2)] with 2. Furthermore, the borate represents a key material to achieve the attachment of tris(pyrazolyl)borate groups to the peripheries of carbosilane dendrimers. Thus, the platinum-catalyzed hydrosilylation reactions of compound with the dendritic cores Si[(CH(2))(3)SiMe(2)H](4) (G(0)-(SiH)(4)), (G(1)-(SiH)(8)), and (G(2)-(SiH)(16)) gave the corresponding borate-containing dendrimers Si[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](4) (G(0)-B(4)), Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)}(2)](4) (G(1)-B(8)), and Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](2)}(2)](4) (G(2)-B(16)) selectively in the anti-Markovnikov direction. Further reactions of G(0)-B(4), G(1)-B(8) and G(2)-B(16) with potassium pyrazolate and pyrazole rendered the corresponding polyanionic dendrimers K(4)[Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)}(4)] (G(0)-(Bpz(3))(4)), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16), respectively, which contain 4, 8, and 16 tris(pyrazolyl)borate groups symmetrically located around the dendritic peripheries. These unusual polyanionic dendrimers are excellent scaffolds to support metal centres, as shown by the reactions of G(0)-(Bpz(3))(4), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16) with [{Rh(mu-Cl)(nbd)}(2)] to give the neutral rhodadendrimers [Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)Rh(nbd)}(4)] G(0)-(Bpz(3)Rh)(4), G(1)-(Bpz(3)Rh)(8) and G(2)-(Bpz(3)Rh)(16) as stable solids in excellent yields. Following this protocol, mixed rhodium/iridium metallodendrimers can be prepared.  相似文献   

18.
The spin crossover (SC) compounds [Fe(PM-AzA)2(NCX)2] and [Fe(PM-FIA)2(NCX)2] (with PM-AzA = N-2'-pyridylmethylene-4-(phe-nylazo)aniline, PM-FIA = N-2'-pyridylmethylene-4-(2-amino)fluorene, and X = S, Se) have been prepared. The SC regimes have been deduced from variable-temperature magnetic susceptibility data. The enthalpy and entropy changes associated with the SC have been evaluated from DSC measurements. A cooperativity factor, C, has been defined, and its values for the different compounds have been deduced from the spin crossover curves. At 10 K, the light-induced excited spin state trapping (LIESST) effect has been observed within the cavity of the SQUID magnetometer. The critical temperatures Tc(LIESST) have been determined for [Fe(PM-AzA)2(NCS)2] and [Fe(PM-F1A)2(NCX)2], and the role of cooperativity has been analyzed. A linear correlation has been found between the Tc(LIESST) and C values. The kinetics of HS-->LS relaxation have been investigated; a thermally activated mechanism at elevated temperatures and a nearly temperature independent relaxation behavior at low temperatures have been found. Finally, the magnetic behavior recorded under light irradiation in the warming and cooling modes has revealed the occurrence of the light-induced thermal hysteresis (LITH) effect.  相似文献   

19.
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and M?ssbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.  相似文献   

20.
The electronic structure of the cation of [Fe(ptz)(6)](BF(4))(2), a prototype of a class of complexes that display light-induced excited-state spin trapping (LIESST), has been investigated by time-independent and time-dependent density-functional theories. The density of states of the singlet ground state reveals that the highest occupied orbitals are metal centered and give rise to a low spin configuration Fe(2+)(3d(xy) ( upward arrow downward arrow)3d(xz) ( upward arrow downward arrow)3d(yz) ( upward arrow downward arrow)) in agreement with experiment. Upon excitation with light in the 2.3-3.3 eV range, metal-centered spin-allowed but parity-forbidden ligand field (LF) antibonding states are populated which, in conjunction with electron-phonon coupling, explain the experimental absorption intensities. The computed excitation energies are in excellent agreement with experiment. Contrary to simpler models we show that the LF absorption bands, which are important for LIESST, do not originate in transitions from the ground to a single excited state but from transitions to manifolds of nearly degenerate excited singlets. Consistent with crystallography, population of the LF states promotes a drastic dilation of the ligand cage surrounding the iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号