首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction. Received: 9 February 1998 / Revised and Accepted: 13 May 1998  相似文献   

2.
We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39K and 40K atoms. Received: 18 May 1998 / Revised: 24 August 1998 / Accepted: 31 August 1998  相似文献   

3.
We discovered a simple quadratic equation, which relates scattering phases of particles on Fermi surface. We consider one-dimensional Bose gas and XXZ Heisenberg quantum spin chain. Received: 4 December 1997 / Accepted: 17 March 1998  相似文献   

4.
The effect of point defects on persistent currents in mesoscopic rings is studied in a simple tight-binding model. Using an analogy with the treatment of the critical quantum Ising chain with defects, conformal invariance techniques are employed to relate the persistent current amplitude to the Hamiltonian spectrum just above the Fermi energy. From this, the dependence of the current on the magnetic flux is found exactly for a ring with one or two point defects. The effect of an aperiodic modulation of the ring, generated through a binary substitution sequence, on the persistent current is also studied. The flux-dependence of the current is found to vary remarkably between the Fibonacci and the Thue-Morse sequences. Received: 4 March 1998 / Revised: 20 April 1998 / Accepted: 30 April 1998  相似文献   

5.
The so called exhaustion problem occurs when few electrons have to screen many spins in a metal with magnetic impurities. A singlet Fermi liquid ground state is possible only if all impurities are “isotropized” in such a way as to suppress their entropy. That takes a time and the corresponding energy limits the Fermi liquid range. The present note explores that issue of time and energy scales, and it concludes that is much smaller than the single impurity Kondo temperature. Similarly the relevant energy scale is proportional to the number of electrons. Recent results on the Mott metal insulator transition in infinite dimension are reconsidered in the light of these results: controversies in that respect are shown to reduce to a simple physical question, with no firm answer as to now. Received: 5 May 1998 / Received in final form and Accepted: 29 July 1998  相似文献   

6.
In order to study the effect of interaction and lattice distortion on quantum coherence in one-dimensional Fermi systems, we calculate the ground state energy and the phase sensitivity of a ring of interacting spinless fermions on a dimerized lattice. Our numerical DMRG studies, in which we keep up to 1000 states for systems of about 100 sites, are supplemented by analytical considerations using bosonization techniques. We find a delocalized phase for an attractive interaction, which differs from that obtained for random lattice distortions. The extension of this delocalized phase depends strongly on the dimerization induced modification of the interaction. Taking into account the harmonic lattice energy, we find a dimerized ground state for a repulsive interaction only. The dimerization is suppressed at half filling, when the correlation gap becomes large. Received: 11 February 1998 / Revised: 1st April 1998 / Accepted: 30 April 1998  相似文献   

7.
We derive the jump in the specific heat at T=T c for a superconductor in a non-Fermi liquid model. We took into consideration the two possible limits in this problem: the spin-charge separation model for a Fermi liquid and the usual non-Fermi liquid model which satisfies the homogeneity relation for the spectral function , ). We also derive the order parameter behavior for these two cases in the vecinity of the critical temperature. Received: 25 January 1998 / Revised: 25 March 1998 / Accepted: 25 March 1998  相似文献   

8.
The -(BETS)2C(CN)3 radical cation salt was prepared by electrocrystallization, and its crystal structure was determined by single crystal X-ray diffraction. The electronic structure of -(BETS)2C(CN)3 was studied by means of the extended Hückel tight binding method. The electrical conductivity of this salt as a function of temperature shows a metallic behaviour down to 1.3 K. Shubnikov-de Haas oscillations reveal both the classical and magnetic breakdown orbits on the Fermi surface typical of the -type organic conductors. In addition, a low frequency oscillation (250 T) which is not predicted by the band structure calculations has been found in the oscillation spectrum. Received: 11 March 1998 / Revised: 9 June 1998 / Accepted: 11 June 1998  相似文献   

9.
Using electron paramagnetic resonance, optical absorption, and fast spectroscopy of light-induced absorption changes, it is shown that codoping BaTiO3:Rh with NaBa acceptors raises the charge state of Rh3+ to Rh4+. Subsequent oxidation under high oxygen pressures can lower the Fermi level to Rh4+/5+, leading to increased infrared absorption. The light-induced charge transfer in such specimens is characterised by “one center” behaviour. Received: 18 November 1998 / Revised version: 23 December 1998 / Published online: 7 April 1999  相似文献   

10.
We derive the effective low-energy theory for single-wall carbon nanotubes including the Coulomb interactions among electrons. The generic model found here consists of two spin-fermion chains which are coupled by the interaction. We analyze the theory using bosonization, renormalization-group techniques, and Majorana refermionization. Several experimentally relevant consequences of the breakdown of Fermi liquid theory observed here are discussed in detail, e.g., magnetic instabilities, anomalous conductance laws, and impurity screening profiles. Received: 12 December 1997 / Revised: 9 March 1998 / Accepted: 12 March 1998  相似文献   

11.
We calculate the electron-phonon scattering rate for an asymmetric double barrier resonant tunneling structure based on dielectric continuum theory, including all phonon modes, and show that interface phonons contribute much more to the scattering rate than do bulk-like LO phonons for incident energies which are approximately within an order of magnitude of the Fermi energy. The maximum scattering rate occurs for incident electron energies near the quantum well resonance. Subband nonparabolicity has a significant influence on electron-phonon scattering in these structures. We show that the relaxation time is comparable to the dwell time of electrons in the quantum well for a typical resonant tunneling structure. Received: 23 December 1997 / Revised: 24 March 1998 / Accepted: 9 March 1998  相似文献   

12.
The existence of broken pseudo-spin symmetry in the Pb nucleus has been studied in the relativistic mean field approach using realistic Lagrangian parameters. Its relationship to spin orbit splitting and the vanishingly small surface delta character of the mean spin orbit potential are investigated. In the 208Pb nucleus the broken pseudo-spin doublets are found to exist above the neutron (proton) Fermi surfaces. Received: 16 April 1998 / Revised version: 26 June 1998  相似文献   

13.
We present a three–dimensional model for quark matter with a density dependent quark–quark (confining) potential, which allows to describe a sort of deconfinement transition as the system evolves from a low density assembly of bound structures to a high density free Fermi gas of quarks. We consider different confining potentials, some of which successfully utilized in hadron spectroscopy. We find that a proper treatment of the many–body correlations induced by the medium is essential to disentangle the different nature of the two (hadronic and deconfined) phases of the system. For this purpose the ground state energy per particle and the pair correlation function are investigated. Received: 10 June 1998 / Revised version: 24 September 1998  相似文献   

14.
We show how Fermi liquid theory results can be systematically recovered using a renormalization group (RG) approach. Considering a two-dimensional system with a circular Fermi surface, we derive RG equations at one-loop order for the two-particle vertex function in the limit of small momentum () and energy () transfer and obtain the equation which determines the collective modes of a Fermi liquid. The density-density response function is also calculated. The Landau function (or, equivalently, the Landau parameters F l s and F l a ) is determined by the fixed point value of the -limit of the two-particle vertex function (). We show how the results obtained at one-loop order can be extended to all orders in a loop expansion. Calculating the quasi-particle life-time and renormalization factor at two-loop order, we reproduce the results obtained from two-dimensional bosonization or Ward Identities. We discuss the zero-temperature limit of the RG equations and the difference between the Field Theory and the Kadanoff-Wilson formulations of the RG. We point out the importance of n-body () interactions in the latter. Received: 27 June 1997 / Received in final form: 17 December 1997 / Accepted: 26 January 1998  相似文献   

15.
The elementary excitation spectrums for the Anderson model at finite temperatures are calculated by using the Bethe-ansatz solution. The formulation is based on the method of Yang and Yang, which was developed for the one-dimensional boson systems with the -function type interaction. We obtain the temperature dependence of the spin and the charge excitation spectrums. When the impurity level lies deeply from the Fermi level and the Coulomb interaction is suitably large, the resonant peak structure develops in the low energy region of the spin excitation spectrum and the hump structure grows around the impurity level of the charge excitation spectrum with decreasing temperature. Received: 21 January 1998 / Accepted: 17 March 1998  相似文献   

16.
The low-energy electronic structure of a c-axis SrxAyCuO2 (A is alkaline earth cation, x+y≦1, hole- and electron-doped infinite layer) thin film, grown by laser-molecular-beam epitaxy on a SrTiO3 (001) substrate, has been studied using ultrahigh-vacuum scanning tunneling microscopy/spectroscopy. Images have been obtained for co-deposited SrxAyCuO2 thin films, which show the surface consisting of flat terraces separated by steps that are unit cell high. Tunneling spectra of undoped Sr0.3Ca0.7CuO2 indicate a wide band gap of 1.8 eV which is consistent with the charge transfer gap. Hole-doped Sr0.85CuO2 shows in-gap states appearing at both the valence and conduction band edges. In contrast, for the electron-doped Sr0.9La0.1CuO2, in-gap states appear predominantly above the Fermi level, and the spectral shape becomes asymmetric around the Fermi level. When these two systems are compared, barrier-height measurements reveal that there is no apparent shift of the Fermi level measured from the vacuum level. This suggests that the framework of the rigid-band picture might break down implying a strongly correlated electron system. Received: 20 August 1998 / Accepted: 15 February 1999 / Published online: 5 May 1999  相似文献   

17.
Ionization of metal clusters by ions in the Fermi velocity range   总被引:1,自引:0,他引:1  
We simulate excitation of metal clusters by highly charged, energetic ions, analyzing electron emission in terms of discrete ionization probabilities. Our test case is the collision of on the cluster at velocities around the electronic Fermi velocity of bulk sodium. The calculations are performed with a density-functional approach, using the time-dependent local density approximation. We find that ionization takes place on an extremely short time scale of less than 5 fs. The preferred final charge state depends sensitively on the impact parameter. High ionization can easily be achieved in sufficiently close collisions. Direct trapping through the by-passing ion is found to be of little importance at the velocities considered. Received: 28 July 1997 / Received in final form: 23 December 1997 / Accepted: 8 January 1998  相似文献   

18.
We exploited resonant photoemission at the Ce absorption edge to investigate the Ce 4f states in . High resolution spectra reveal, near the Fermi level, the characteristic fine structure of intermediate valence Ce compounds. The spectral lineshape is consistent with the typical “Kondo” character of CePd, but the prominent ionization peak is found at the unusually low binding energy of 1 eV. We briefly discuss the implications of these observations. Received: 13 October 1997 / Accepted: 21 January 1998  相似文献   

19.
The spin magnetic susceptibility of the p-d model is calculated by means of a perturbation theory in the hybridization term V through a generalized cumulant expansion (GCE). The analysis is approached from the paramagnetic metallic phase. The results qualitatively reproduce some unusual magnetic properties in the normal state of the hole-doped cuprates, supporting the scenario of a Van Hove singularity near the Fermi level. Received 15 October 1998 and Received in final form 24 March 1999  相似文献   

20.
We investigate the Coulomb blockade resonances and the phase of the transmission amplitude of a deformed ballistic quantum dot weakly coupled to leads. We show that preferred single-particle levels exist which stay close to the Fermi energy for a wide range of values of the gate voltage. These states give rise to sequences of Coulomb blockade resonances with correlated peak heights and transmission phases. The correlation of the peak heights becomes stronger with increasing temperature. The phase of the transmission amplitude shows lapses by between the resonances. Implications for recent experiments on ballistic quantum dots are discussed. Received 17 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号