首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency up-conversion, an efficient laser emission and amplification in Er3+:LiAl5O8 phosphors co-doped with Yb3+ and Zn2+ phosphor powders in the 520–560, 640–680 nm regions and at ∼1.5 μm, respectively, have been reported. The emission corresponds to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation into the intermediated 4I11/2 level using ∼980 nm radiation from a CW laser. Possible mechanisms involved for the up-conversion processes based on the energy level matching scheme, the pump-power dependence and the dynamical behaviour have been discussed. The effect of the addition of Yb3+ and Zn2+ for the amplification in the 1.5 μm eye-safe telecommunication window has been elaborated and characterized in detail.  相似文献   

2.
CaAl12O19 powders doped with Er3+, Yb3+, and Mg2+ ions have been prepared by a low-temperature combustion synthesis technique. Formation and chemical compositions were analysed by powder X-ray diffraction and energy-dispersive spectroscopy. The visible luminescence spectra of the doped phosphor upon excitation with ∼378 nm radiation from a Xenon lamp have been studied. A broad band emission in the range of 1400–1700 nm with a peak around 1.5 μm and FWHM of about ∼80 nm responsible for the eye-safe telecommunication window has been observed upon direct excitation with a NIR laser into the 4I11/2 level of Er3+. The effect of co-doping with Yb3+ and Mg2+ ions in the CaAl12O19:Er3+ matrix on the photoluminescence intensity corresponding to the 2H11/2,4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions of Er3+ is elaborated and discussed in detail.  相似文献   

3.
The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The results have proved that arc discharge synthesis is a new promising preparation technology for optical materials. Supported by National Natural Science Foundation of China (Grant No. 10804015), the Scientific Research Foundation for Doctor of Liaoning Province (Grant No. 20071095), and the Educational Committee Foundation of Liaoning Province (Grant No. 2008123)  相似文献   

4.
YAG phosphor powders doped/codoped with Er3+/(Er3+ + Yb3+) have been synthesised by using the solution combustion method. The effect of direct pumping into the 4I11/2 level under 980 nm excitation of doped/codoped Er3+/Yb3+−Er3+ in Y3Al5O12 (YAG) phosphor responsible for an infrared (IR) emission peaking at ∼1.53 μm corresponding to the 4I13/24I15/2 transition has been studied. YAG exhibits three thermally-stimulated luminescence (TSL) peaks at around 140°C, 210°C and 445°C. Electron spin resonance (ESR) studies were carried out to identify the centres responsible for the TSL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0176 is identified as O ion, while centre II with an isotropic g-factor 2.0020 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal-annealing experiments and this centre (assigned to F+ centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and these two centres appear to correlate with the observed high-temperature TSL peak in YAG phosphor.  相似文献   

5.
Alumina (Al2O3) powders doped with Er3+, Yb3+ and Zn2+ ions have been prepared by a low-temperature combustion synthesis technique. The phase purity and crystalline structure of the combustion products are confirmed by powder X-ray diffraction. An efficient frequency upconversion in the visible region and the emission in the infrared (IR) region respectively corresponding to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation with a CW laser lasing at ∼980 nm are discussed. The enhancement observed in the intensity of the upconversion emission bands in the visible region and the emission band in the IR region due to the presence of Yb3+ and Zn2+ in Er3+:Al2O3 powders is reported and explained in detail.  相似文献   

6.
Er3+-doped Al2O3 has been prepared by a sol–gel method, using aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of erbium nitrate [Er(NO3)3·5H2O]. The phase structure of θ-(Al,Er)2O3 phase was obtained for the 0.1 mol. % Er3+-doped Al2O3 at the sintering temperature of 1273 K. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2 H 11/2, 4 S 3/24 I 15/2 and 4 F 9/24 I 15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The temperature dependence of green up-conversion emissions was studied over a wide temperature range of 295–725 K, and reasonable agreement between the calculated temperatures obtained by the fluorescence intensity ratio theory and the measured temperature was obtained, which proved that Er3+-doped Al2O3 has a good potential for the development of high-temperature sensors. It has some advantages compared to glasses due to its higher thermal and mechanical resistance and allows measurements in a large temperature range. PACS 78.55.Hx; 81.40.Tv  相似文献   

7.
New near-infrared luminescent, monoclinic CaAl2O4:Er3+ phosphor was prepared by using the combustion route at furnace temperatures as low as 500 °C in a few minutes. Combustion synthesized phosphor has been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping studies. The luminescence spectra of Er3+-doped calcium aluminate were studied at UV (380 nm), vis (488 nm) and IR (980 nm) excitation. Upon UV and vis excitation, the CaAl2O4:Er3+ phosphor exhibits emission bands at ~523 nm and at ~547 nm, corresponding to transitions from the 2H11/2 and 4S3/2 erbium levels to the 4I15/2 ground state. A strong luminescence at 1.55 μm in the infrared (IR) region due to 4I13/24I15/2 transition has been observed in CaAl2O4:Er3+ phosphor upon 980 nm CW pumping. In the spectrum of IR-excited up-conversion luminescence, green (~523 and ~547 nm) and red (662 nm) luminescence bands were present, the latter associated with the 4F9/24I15/2 transitions of Er3+ ions. Both excited state absorption and energy transfer may be proposed as processes responsible for the population of the 4S3/2 and 4F9/2 erbium levels upon IR excitation. The mechanisms responsible for the up-conversion luminescence are discussed.  相似文献   

8.
An intense green upconversion (UC) emission (λ exc=976 nm) followed by the heating effect in Yb3+/Er3+ co-doped Gd2O3 nanoparticles has been detected. A temperature rise up to 504 K has been observed (on a noteworthy low laser excitation of 290 mW) using fluorescence intensity ratio (FIR) method of the thermalized UC luminescence bands 2H11/24I15/2 and 4S3/24I15/2 of Er3+ ion. The reported controlled optical heating of nanoparticles and its nano-volume has potential applications in biomedicines and in the creation of holes in soft materials.  相似文献   

9.
Up-converting NaRF4-NaR′F4 (R: Y, Yb, Er) nanomaterials with different core-shell combinations were prepared with the co-precipitation method. The X-ray powder diffraction (XPD) measurements revealed the presence of both the cubic and hexagonal NaRF4 phases. The crystallite sizes calculated with the Scherrer formula were 100 and 150 nm for the cubic and hexagonal phases, respectively. The FT-IR spectra showed water impurities. The up-conversion luminescence and luminescence decays were studied with NIR laser excitation at 970 nm. The up-conversion luminescence spectra showed strong red (640–685 nm) (4F9/24I15/2) and moderate green (515–560 nm) (2H11/2, 4S3/24I15/2) Er3+ luminescence. The strongest up-conversion luminescence and longest red luminescence decay was obtained from the Na(Y,Yb)F4-NaErF4 core-shell combination.  相似文献   

10.
This paper reports the synthesis of high upconversion luminescent Gd2O3: Er3+, Yb3+ nanophosphor through optimized combustion route using urea as a reducing agent. The paper also reports the first observation of upconversion emission bands extending upto the UV region (335, 366 and 380 nm) in Er3+–Yb3+ co-doped phosphor materials. The fuel to oxidizer ratio has been varied to obtain the maximum upconversion luminescence. Three high intensity bands are found at 408, 523–548 and 667 nm due to the 4G11/2 → 4I15/2, 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively, along with the other bands. Input excitation power dependence has been studied for different transitions, and the saturation effect and decrease in the slope of different transitions at higher input pump power has been explained. Heat treatments of the samples show change in crystallite phase/size and relative upconversion luminescence intensities of blue, green and red bands. The color of the phosphor emission has shown to be tunable with change in the crystal structure as well as on excitation laser power and Er3+–Yb3+ concentration. The property of color tunability of the phosphor material has been used to record the fingerprint in different colors. Also, the future prospect of the nanocrystalline phosphor material as a sensor for temperature, using FIR method, has been explored.  相似文献   

11.
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2–Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of ≈200% in the intensity of the Er3+ transition 4S3/24I15/2 (545 nm) and of ≈100% for transitions 2H11/24I15/2 (525 nm), 4F9/24I15/2 (660 nm), and 4I5/24I13/2 (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.  相似文献   

12.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

13.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

14.
The up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol–gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence measurements were made at room temperature with IR-laser excitation at 977 nm. The IR spectra revealed the conventional and OH impurities for the combustion synthesis products. The structure of the ZrO2:Yb3+, Er3+ nanomaterials was cubic except for the minor monoclinic and tetragonal impurities obtained with the sol–gel method. The materials showed red (650–700 nm) and green (520–560 nm) up-conversion luminescence due to the 4F9/24I15/2 and (2H11/2, 4S3/2)→4I15/2 transitions of Er3+, respectively. The products obtained with the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow.  相似文献   

15.
Erbium-doped tin dioxide (SnO2:Er3+) was obtained by the sol–gel method. Spectroscopic properties of the SnO2:Er3+ are analyzed from the Judd–Ofelt (JO) theory. The JO model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd–Ofelt intensity parameters: Ω2, Ω4, and Ω6. With the weak spectroscopic quality factors Ω46, we expect a relatively prominent infrared laser emission. The intensity parameters are used to determine the spontaneous emission probabilities of some relevant transitions, the branching ratios, and the radiative lifetimes of several excited states of Er3+. The emission cross section (1.31×10-20 cm2) is evaluated at 1.54 μm and was found to be relatively high compared to that of erbium in other systems. Efficient green and red up-conversion luminescence were observed, at room temperature, using a 798-nm excitation wavelength. The green up-conversion emission is mainly due to the excited state absorption from 4 I 11/2, which populates the 4 F 3/2,5/2 states. The red up-conversion emission is due to the energy transfer process described by Er3+ (4I13/2)+Er3+(4I11/2)→Er3+(4F9/2)+Er3+ (4 I 15/2) and the cross-relaxation process. The efficient visible up-conversion and infrared luminescence indicate that Er3+-doped sol–gel SnO2 is a promising laser and amplifier material. PACS 71.20.Eh; 74.25.Gz; 78.55.-m  相似文献   

16.
Localized modification of the optical properties of erbium doped strontium barium niobate (SBN) glass has been performed using femtosecond laser irradiation. The samples, with composition SrO–BaO–Nb2O5–B2O5 and doped with 5%mol of Er3+, were fabricated using a melt-quenching method. The samples were irradiated with different number of pulses per spot (1–50 pulses) at two different laser fluences (2.6 and 5.6 J/cm2) by using an fs laser amplifier operating at 800 nm and generating pulses with a duration of 120 fs. Micro-luminescent microscopy, using an Ar+ laser as excitation source, has been used to analyze the modifications of the luminescent properties of the sample upon fs laser exposure. The emissions of the Er3+: 4I11/24I15/2 and 4I13/24I15/2 transitions allow appreciating the structural modifications caused by femtosecond laser exposure. The lifetimes of the levels involved in these transitions were measured inside and outside the laser irradiated region. These measurements have been compared with those obtained in bulk glass ceramic sample, which is obtained from the glass precursor by a thermal treatment in order to estimate the optimal conditions to produce nanocrystals in a localized region by ultrafast laser irradiation.  相似文献   

17.
Polarized spectral properties of Er3+:NaGd(WO4)2 single crystal are reported. The crystal was grown by the Czochralski method. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios. Fluorescence decay curves of the 4 I 13/2, 4 I 11/2, and 4 S 3/2 multiplets for the Er3+ ions were measured. Stimulated emission cross-sections of the 4 I 13/24 I 15/2 transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. Multi-phonon relaxation rates of the crystal were estimated. Green up-conversion fluorescence around 531 and 552 nm was observed, and the possible up-conversion mechanisms were proposed. PACS 78.20.-e; 42.70.Hj  相似文献   

18.
The 1 mol% Er3+- and 0-20 mol% Yb3+-codoped Al2O3 powders have been prepared by the nonaqueous sol-gel process using aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium and ytterbium nitrate as dopant under isopropanol environment. The two crystalline types of doped Al2O3, γ and θ, and a stoichiometric compound, (Yb,Er)3Al5O12, were obtained for all the Er3+-Yb3+-codoped Al2O3 powders at the sintering temperature of 1000 °C. The maximal intensity of both the green and red up-conversion emissions centered at about 523, 545, and 660 nm was observed for the 1 mol% Er3+- and 10 mol% Yb3+-codoped Al2O3 powders. The intensity ratio of the red to green up-conversion emission (Ired/Igreen) increased with increasing the Yb3+ doping concentration for the Er3+-Yb3+-codoped Al2O3 powders. Furthermore, the intensity ratio of the green up-conversion emission at about 523 to 545 nm (I523/I545) was proportional to the Yb3+ doping concentration and pump electric current, which was associated with the elevated temperature of powders.  相似文献   

19.
In order to find a new Er-doped host for near infrared (NIR) optical amplifiers, a study on the optimization of the erbium emission ions in the Y2O3–Al2O3–SiO2 system was performed. (100 ? x) Y3Al5O12 ? (x) SiO2 powders (x varies from 0 to 70, in mol%) with a fixed Er2O3 concentration of 1.0 mol% were synthesized by a modified Pechini method and heat-treated at 900 and 1000 °C. The photoluminescence (PL) spectra at 1540 nm of the 4I13/2 → 4I15/2 transition of Er3+ ions and the up-conversion spectra at visible region (2H11/2 + 4S3/2 + 4F9/2 → 4I15/2) upon 980 nm excitation were evaluated. Different techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were considered to evaluate crystallization and phase-evolution of the powders as a function of the silica content (x) and annealing temperature. The analyses were based on the comparison between two different solvents used in the preparation of the polymeric resins: ethanol and water. The optimal conditions for ethanol are quite different than the conditions for water used as solvent, confirming that the PL properties at the NIR region are highly sensitive to the changes in the host stoichiometry and processing conditions. The highest emission intensity at 1540 nm was observed for x = 30 for ethanol and x = 70 for water, treated at 900 and 1000 °C, respectively. This result could be attributed to the combination of low symmetry and good dispersion of the Er3+ions in these hosts.  相似文献   

20.
Spectroscopic characterization of Yb3+/Er3+ codoped TeO2–R2O–ZnO–Ln2O3 glasses as a function of network modifiers (R=Li, Na and K) has been investigated. The Judd–Ofelt parameters (Ωt), quantum efficiency in near infrared (1.55 μm) and visible up-conversion (546 and 660 nm) and quality factor spectroscopy (χ) were calculated. Three up-conversion emission bands centered at 525, 546 and 660 nm were observed as maxima for glasses containing potassium. The measured lifetime of 4I13/2, 4F9/2 and 4S3/2 from Er3+ and 4F5/2 from Yb3+ levels increased when potassium (K) replaced lithium (Li) and Na. The maximum emission cross-section (ECS) for 4I13/24I15/2 transition of Er3+ was calculated to be 1.02×10?20 cm2 for TeO2–Li2O–ZnO–Ln2O3 glasses. The energy transfer efficiency (ET) from Yb3+ to Er3+, (4F5/2)+(4I15/2)→(4F7/2)+(4I13/2), was calculated using the measured lifetimes of Yb3+ with and without the presence of acceptor (Er3+). The maximum calculated ET was 58% for 0.25 mol% of Er3+ and 3 mol% of Yb3+ for TeO2–K2O–ZnO–Ln2O3 glass composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号