首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the development of a low noise heterodyne receiver optimized for astronomical observations in the 650 GHz atmospheric window, and specifically for the CO(J=65) line at 691.5 GHz. The system is based on an open structure SIS heterodyne mixer pumped by a continuously tunable solid state oscillator. A niobium SIS junction double array is placed at the end of an integrated V-Antenna. For broad band impedance matching a combination of microstrip impedance transformer and radial stub was used. Receiver noise temperatures of 550 K DSB at 684 GHz were achieved at a 1.8 K physical temperature. The performance improved substantially when decreasing the temperature from 4.2 to 1.8 K. Comparison of model calculations and Fourier transform direct detection measurements of the tuning structure implies that this effect is likely due to the coincidence of operational frequency and the gap frequency of the niobium.  相似文献   

2.
A heterodyne receiver based on a 1/3 reduced height rectangular waveguide SIS mixer with two mechanical tuners has been built for astronomical observations of molecular transitions in the 230 GHz frequency band. The mixer used an untuned array (RnCj3, Rn70 ) of four Nb/AIOx/Nb tunnel junctions in series as a nonlinear mixing element. A reasonable balance between the input and output coupling efficiencies has been obtained by choosing the junction number N=4. The receiver exhibits DSB (Double Side Band) noise temperature around 50 K over a frequency range of more than 10 GHz centered at 230 GHz. The lowest system noise temperature of 38 K has been recorded at 232.5 GHz. Mainly by adjusting the subwaveguide backshort, the SSB (Single Side Band) operation with image rejection of 15 dB is obtained with the noise temperature as low as 50 K. In addition, the noise contribution from each receiver component has been studied further. The minimum SIS mixer noise temperature is estimated as 15 K, pretty close to the quantum limit v/k11 K at 230 GHz. It is believed that the receiver noise temperatures presented are the lowest yet reported for a 230 GHz receiver using untuned junctions.  相似文献   

3.
The five antennas of the Plateau de Bure Interferometer have been instrumented with dual-channel receivers in the 3 mm and 1 mm bands. Polarisation diplexing allows simultaneous observations in the two bands. Each receiver has ambient and cryogenic calibration loads, and one receiver is equipped with a beam switching chopper for total power flux measurements. Typically the receiver noise temperatures are<50 K in both the 3 mm band and the 1 mm band. Initial observations show that at 115 GHz the sensitivity is doubled compared to the previous receivers, and high quality fringes have been obtained at 230 GHz. Preliminary experiments show that the receiver stability is good enough to correct atmospheric phase variations by monitoring the fluctuations in atmospheric emission at 225 GHz. VLBI fringes have been detected between one 15-m antenna and the IRAM 30-m antenna in Spain.  相似文献   

4.
We describe the design and performance of a 210–280 GHz SIS heterodyne receiver built for use on the Maxwell Telescope. The mixer utilises a lead alloy SIS tunnel junction, mounted in 41 reduced height rectangular waveguide, and is tuned with a backshort in 21 reduced height guide. The receiver has a receiver noise temperature of <200K (DSB) across the RF band from 210–270 GHz, with a best noise temperature measured in the laboratory of 113K (DSB) at 231 GHz. A prototype version of this receiver was successfully operated on the telescope in May 1989. By direct intercalibration with a Schottky diode receiver we deduced a best receiver noise temperature of 140K (DSB) at 245 GHz. Discrepancies between this figure and that derived from broad band thermal load calibration are discussed in the accompanying paper (Little et al., 1992, this issue).  相似文献   

5.
We developed a low noise dual channel receiver with 100GHz and 150GHz band, which is used to make the simultaneous observation with two bands. The SIS mixers are used in both bands. The constructed dewar for the receiver has a performance with a vacuum of 10–8torr and a temperature of 4.2K. The receiver noise temperature is 50K(DSB) for 100GHz band and 80K(DSB) for 150GHz band, respectively. In order to achieve the simultaneous observations, the quasioptical system is precisely designed, and also evaluated by measurements in the laboratory. The relative pointing offset between two bands is 3. We have observed the various sources using the receiver since October 1998.  相似文献   

6.
A waveguide SIS heterodyne receiver using a Nb/AlOX/Nb junction has been built for astronomical observations of molecular transitions in the frequency range 600 GHz - 635 GHz, and has been successfully used at the Caltech Submillimeter Observatory (CSO). We report double sideband (DSB) receiver noise temperatures as low as 245 K at 600 GHz -610 GHz, and near 300 K over the rest of the bandwidth. These results confirm that SIS quasiparticle mixers work well at submillimeter-wave frequencies corresponding to photon energies of at least 90% of the superconductor energy gap. In addition, we have systematically investigated the effect on the receiver performance of the overlap between first-order and second-order photon steps of opposite sign at these frequencies. The receiver noise increases by as much as 40% in the region of overlap. We infer potential limitations for operating submillimeter-wave Nb/AlOx/Nb mixers.  相似文献   

7.
A new heterodyne receiver has been developed for the submillimeter wavelength region. The mixing element is liquid helium cooled bulk n-InSb in a quantizing magnetic field. The value of the magnetic induction is such that the detector photoresponse is dominated by cyclotron-resonance absorption. Laboratory tests have yielded double-sideband receiver noise temperatures of 250 K at 492 GHz, 350 K at 625 GHz and 510 K at 812 GHz. The magnetic induction for these tests was 2.5 KG and the mixer operating temperature was 1.6 K.  相似文献   

8.
FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 695 GHz ( 455 – 432 µm). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources duringFANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25hv/k). The heart of the receiver is a two-junction Nb/AlOx/Nb SIS array fed by a sandwiched V-Antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn 10 , an area of 2 µm2, an individual radial stub circuit to resonate the capacitance, and a /4 transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 × 0.8 m optical breadboard.A preliminary version of this paper appeared in theProceedings of the Fifth International Space Terahertz Technology Symposium.  相似文献   

9.
A 110 GHz superconductor insulator superconductor (SIS) tunnel junction receiver has been developed and used in regular astronomical observations on the 4m radio telescope at the Department of Astrophysics, Nagoya University. The SIS junction consists of a sandwich structure of Nb/AlOx/Nb, and is cooled to 4.2K with a closed cycle He-gas refrigerator. The receiver exhibits a best double side band noise temperature of 23±2 K at 110GHz. Additional measurements at 98–115 GHz indicate that the receiver has a good response over this input frequency range.  相似文献   

10.
We measured atmospheric opacity at 220 GHz at the summit of Mt. Fuji (alt. 3776 m) about one year in order to explore a feasibility of submillimeter-wave astronomical observations. For this purpose, a 220 GHz radiometer system enclosed in a radome (51×51×62 cm3) has been developed. The 220 GHz opacity was lower than 0.06 for a significant fraction ( 45 %) of time from November 1994 to March 1995. Diurnal variation of the opacity at the summit of Mt. Fuji is so small that continuous observation at submillimeter-wave is possible through day and night. Yearly variation of the opacity is studied from water vapor pressure data measured at the weather station for the past 3 years. To prevent accumulation of ice and snow on the Gore-Tex membrane in the radome, the outer membrane was supplied with a thermal flux of 0.63 kW m–2 and the adjacent metal radome surfaces were supplied with a flux of 0.9 kW m–2. We evaluate from the 220 GHz transmission data that this heat flux is sufficient to keep the membrane on the radome free of ice and snow during 83 % of the time in 5 winter months. The summit of Mt. Fuji appears to be a promising site for submillimeter-wave observations.  相似文献   

11.
12.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the RnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

13.
We developed a 1024-channel digital auto-correlation spectrometer for the Seoul Radio Astronomy Observatory (hereafter the SRAO-1KACS). The SRAO-1KACS has two main modules: the IF-to-baseband converter (IFBC) module and the 1024-channel auto-correlator (1KACR) module. The input frequency range of the IFBC module is from 1.5 to 1.55 GHz with a dynamic range of –4 +3 dBm. The 1KACR module performs calculations of auto-correlation coefficients by the accumulation and modulo-2-counting method in 3-level configuration. The system is controlled by a Linux-based personal computer. The SRAO-1KACS provides 3 different observational modes: 50, 25, and 12.5 MHz bandwidth modes. The channel losses are 20%, 12%, and 8% for each bandwidth mode, respectively. Various tests were executed including lab tests and astronomical tests. Lab tests were performed for a 1.5625MHz sinusoidal wave input and for a white noise source. We also executed astronomical tests in 12CO J=1–0 emission line at 115.2712 GHz, which showed that SRAO-1KACS can be used at astronomical observatories.  相似文献   

14.
We report recent results on a 20% reduced height 270–425 GHz SIS waveguide receiver employing a 0.49 µm2 Nb/AlO x /Nb tunnel junction. A 50% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner reduced height waveguide mixer block. The junction uses an end-loaded tuning stub with two quarter-wave transformer sections. We demonstrate that the receiver can be tuned to give 0–2 dB of conversion gain and 50–80% quantum efficiency over parts of it's operating range. The measured instantaneous bandwidth of the receiver is 25 GHz which ensures virtually perfect double sideband mixer response. Best noise temperatures are typically obtained with a mixer conversion loss of 0.5 to 1.5 dB giving uncorrected receiver and mixer noise temperatures of 50K and 42K respectively at 300 and 400 GHz. The measured double sideband receiver noise temperature is less than 100K from 270 GHz to 425 GHz with a best value of 48K at 376 GHz, within a factor of five of the quantum limit. The 270–425 GHz receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii. Preliminary tests of a similar junction design in a full height 230 GHz mixer block indicate large conversion gain and receiver noise temperatures below 50K DSB from 200–300 GHz. Best operation is again achieved with the mixer tuned for 0.5–1.5 dB conversion loss which at 258 GHz resulted in receiver and mixer noise temperature of 34K and 27K respectively.  相似文献   

15.
This paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixers has crossed the level of 1 K GHz−1 at 430 GHz (410 K), 600–650 GHz (480 K), 750 GHz (600 K), 810 GHz (780 K) and is close to that level at 1.1 THz (1250 K) and 2.5 THz (4500 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and about 100 nW for mixers made by e-beam lithography. A waveguide version of 800 GHz receiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, AZ, to conduct astronomical observations of known submillimeter lines (CO, J=7→6, CI, J=2→1). It was proved that the receiver works as a practical instrument.  相似文献   

16.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

17.
We have developed a 3 mm band receiver for SRAO. The receiver employs an Nb-based SIS junction in the mixer and operates at 85–115 GHz with single polarization. The receiver noise temperature is 40–50 K in DSB. It is equipped with an MPI-type filter for single-side band observations. We present the design, construction, and test results for individual components of the receiver optics, heterodyne system, and cryogenics. The receiver has been installed on the 6 m SRAO telescope and tested toward astronomical sources. The beam-measurement experiment suggests that the edge taper is smaller than the designed 12 dB.  相似文献   

18.
An improved pulsed microwave spectrometer for the detection of rotational transitions in gaseous molecules in the frequency range of 130–150 GHz is described. It incorporates a tunable Fabry-Perot cavity and a low noise superneterodyne receiver for the detection of the molecular emission signals. The molecules are excited by /2 pulses provided by a high efficiency frequency doubler which is pulse modulated at an IF frequency of 1.4 GHz.  相似文献   

19.
Gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 1 MW gyrotrons employing synthetic diamond output windows is 5 s at 110 GHz (CPI and JAERI-TOSHIBA), 12 s at 140 GHz (FZK-CRPP-CEA-TED) and 10 s at 170 GHz (GYCOM and JAERI-TOSHIBA), with efficiencies slightly above 30%. Total efficiencies of 45–50 % have been obtained using single-stage depressed collectors (SDC). The energy world record of 160 MJ (0.89 MW at 180 s pulse length and 140 GHz) at power levels higher than 0.8 MW has been achieved by the European FZK-CRPP-CEA-TED collaboration at FZK. Operation at the 1st and the 2nd harmonic of the EC frequency enables gyrotrons to act as medium power step-tunable mm- and sub-mm wave sources in the frequency range from 38 GHz (fundamental) to 889 GHz (2nd harmonic) for plasma diagnostics, EC plasma discharges for generation of multi-charged ions, high-frequency broadband electron paramagnetic resonance (EPR) spectroscopy and medical applications. Gyrotrons have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f 24 GHz, Pout = 4–50 kW, CW, 30%. Future applications which await the development of novel high-power gyro-amplifiers include high resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of gyro-devices and their applications.  相似文献   

20.
FIFI is an imaging spectrometer with two or three Fabry-Perot interferometers (FPI) in series for airborne astronomical observations in the far-infrared range (=40...200m). It employs 5×5 arrays of photoconducting detectors and offers spectral resolutions as small as 2km/s. Resolution and bandwidth can be set over a wide range to match a variety of astronomical sources. Cryogenic optics minimizes thermal background radiation and provides for in-flight step tunable spatial resolution. At 158 m wavelength the background-limited NEP is 3 × 10-15W/Hz at 40 km/s resolution and with two FPI's; with three FPI's the expected NEP is 10-15WHz at 5 km/s resolution.The frequency-chopping mode of the high-resolution Fabry-Perot allows for line detection in extended objects. Absolute internal flux calibration ensures adequate flat fielding of the array elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号