首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Frenkel-Biot theory is used to study the reflection of elastic waves from the boundary of a non-Newtonian (Maxwell) fluid-saturated porous medium. The velocity and attenuation of a Rayleigh surface wave propagating along the boundary of the medium are determined. Two models of a fluid-saturated porous medium are used for calculation: with pore channels of a fixed diameter and with a lognormal distribution of pore channels in size. The results of calculations show that, when the fluid in the porous medium is characterized by a small Deborah number (i.e., exhibits non-Newtonian properties), the velocity of Rayleigh waves exhibits a considerable frequency dispersion. The results also suggest that, in principle, it is possible to estimate the Deborah number from the measured frequency dispersion of the Rayleigh wave velocity.  相似文献   

2.
The frequency dependences of the velocity and attenuation of waves propagating along the boundary between a saturated porous medium and a liquid are investigated. It is shown that, depending on the parameters of the saturated porous medium and the boundary conditions, the propagation of one, two, or three surface waves is possible, each of them being either a true mode or a pseudomode. The results of the study agree well with other investigations carried out in the high-frequency approximation.  相似文献   

3.
Na-Na Su 《中国物理 B》2023,32(1):14301-014301
To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness, whereas the phase velocity is independent of the static permeability. There is an apparent "mode switching" between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves. This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.  相似文献   

4.
The interaction of disturbances in supersonic boundary layer is considered within the framework of the weakly nonlinear stability theory for the Mach number M = 2 on the solid and porous surfaces. The interrelations in several triplets composed of two- and three-dimensional waves at the frequencies related by the phase synchronization conditions were modelled. It was found that their interactions on the solid surface are much stronger in the asymmetric triplet. It was found that on a porous surface, the linear increments of vortex disturbances increase considerably, the region of dangerous frequencies widens, and the spatial extension of the existence of growing oscillations increases. Nonlinear interactions are, as a rule, much more intense in comparison with the case of an solid surface; they realize in a broad frequency range, which results to a broadband growth of the Tollmien — Schlichting subharmonic vortex waves. An increase in the surface porosity leads to the intensification of nonlinear processes.  相似文献   

5.
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell’s electrodynamic equations. We investigate Bloch–Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon–polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide.  相似文献   

6.
崔志文  刘金霞  王春霞  王克协 《物理学报》2010,59(12):8655-8661
推广Biot-Tsiklauri声学模型的同时借鉴Dvorkin和Nur的工作,建立了具有任意孔径分布并顾及喷射流动机制的非牛顿流体饱和孔隙介质声学模型,研究了非牛顿流体(Maxwell流体)饱和孔隙介质中的弹性波的衰减和频散特性.着重讨论充孔隙Maxwell流体的非牛顿流效应对弹性波的频散和衰减的影响.研究表明,饱和流体的非牛顿流效应和喷射流动机制均是引起弹性波波频散和衰减的重要因素.依据非牛顿流体(Maxwell流体)饱和各向同性孔隙介质的Biot-喷射流声学模型,喷射流动只影响纵波的频散和衰减,而饱和流体的非牛顿流效应不仅影响纵波,而且还影响横波的频散和衰减.  相似文献   

7.
The phase velocities of plane waves in a pipe filled with a moving acoustic medium are studied for different laws of flow velocity variation along the pipe radius. The wave equation is solved by the discretization method, which breaks the entire pipe volume into individual cylinders under the assumption that, within each of the cylinders, the flow velocity of the medium is constant. This approach makes it possible to reduce the solution to the wave problem to solving Helmholtz equations for individual cylinders. Based on boundary conditions satisfied at the boundaries between neighboring cylinders, a homogeneous system of linear algebraic equations is obtained. From this system, with the use of the scattering matrices, a simple dispersion equation is derived for determining the phase velocities of plane waves. The stability of the numerical solution to the dispersion equation with respect to the number of cylinders is investigated. The phase velocities of quasi-homogeneous and inhomogeneous waves in a pipe are numerically calculated and analyzed for different velocities of a moving medium and different laws of flow velocity variation along the radius. It is shown that the variation that occurs in the phase velocity of a homogeneous plane wave in a pipe due to the motion of the medium is identical to the mean flow velocity for different laws of flow velocity variation along the radius. For inhomogeneous plane waves, the phase velocity increment exceeds the mean flow velocity several times and depends on both the law of wave amplitude distribution along the radius and the law of the flow velocity variation along the radius.  相似文献   

8.
The influence of exchange coupling of layers on the propagation of magnetostatic dipole volume waves in normally and tangentially magnetized two-layer epitaxial ferrite structures is investigated. It is shown that the indicated influence is manifested in the form of dynamic spin pinning effects on the interlayer boundary and formation of a common dipole-exchange wave spectrum for the entire structure. In this case, at the synchronism frequencies of the dipole and exchange waves the losses of the dipole waves grow and anomalous segments appear in the dispersion. In films magnetized in the “hard” direction relative to the axis of normal uniaxial surface anisotropy the magnetostatic dipole volume waves can interact resonantly with the surface spin waves supported by the boundaries with pinned spins. Zh. Tekh. Fiz. 68, 97–110 (July 1998)  相似文献   

9.
The theoretical properties of a composite chiral-plasma medium are developed. By using the reaction theorem for a magnetized chiroplasma, we obtain the proof of nonreciprocity based upon the constitutive relationships between electromagnetic vectorsE, B, H, D. Using the Maxwell’s equations and the proposed constitutive relations for a chiral-plasma medium, we derive the vectorsE andH and from these equations, dispersion relations andE-field polarizations are based. The obtained results for waves propagating parallel to the external magnetic field in a cold magnetized chiro-plasma are compared with typical results obtained for a cold plasma. For circulary polarized waves, a new mode conversion is founded with the chiral effect. The chiral rotation is obtained and compared with the Faraday rotation. For waves propagating across the magnetic field, we found a shift of the cut-offs of ordinary and extraordinary waves. On the lower branch of the extraordinary wave mode there is no bands of forbidden frequencies and the reflection point vanishes when the chiral parameter increases.  相似文献   

10.
This article presents a numerical study of dispersion characteristics of some symmetric and antisymmetric composites modelled as multilayered packets of layers with arbitrary anisotropy of each layer. The authors introduce a subsidiary boundary problem of three-dimensional elasticity theory for the system of partial differential equations describing the harmonic oscillations of the composite caused by a surface load. The problem reduces to a boundary problem for ordinary differential equations by employing the Fourier transform. An algorithm of constructing the Fourier transform of the Green’s matrix of the given boundary problem is presented. The wave numbers of Lamb waves propagating in composites, their phase velocity surfaces and group wave surfaces are presented through the poles of the transform of the Green’s matrix. The authors obtain the dispersion curves for different directions and frequencies and investigate the dispersion curves and surfaces of wave numbers, phase velocities and group wave surfaces for various composites. The numerical results are then compared with the results obtained by applying other methods.  相似文献   

11.
Analytical expressions are derived for dispersion and attenuation of Rayleigh waves propagating along the statistically rough free surface of a hexagonal crystal (Z cut). The roughness under consideration is one-dimensional (the profile function of the roughness depends on one coordinate) and has the form of hollows of a random lattice. The results obtained earlier in the solution of an analogous problem for a two-dimensional roughness are used in the one-dimensional case. The relationships derived for the dispersion and attenuation of Rayleigh waves are treated analytically and numerically over the entire range of frequencies acceptable in the framework of the perturbation theory. It is shown that the dispersion and attenuation of Rayleigh waves are qualitatively similar to those observed in an isotropic medium.  相似文献   

12.
仇浩淼  夏唐代  何绍衡  陈炜昀 《物理学报》2018,67(20):204302-204302
研究流体/多孔介质界面Scholte波的传播特性对于水下勘探、地震工程等领域具有重要意义.本文基于Biot理论和等效流体模型,采用势函数方法,推导了描述有限厚度流体/准饱和多孔半空间远场界面波的特征方程和位移、孔压计算公式.在此基础上,分别以砂岩和松散沉积土为例,研究了流体/硬多孔介质和流体/软多孔介质两种情况下,可压缩流体层厚度和多孔介质饱和度对伪Scholte波传播特性的影响.结果表明:多孔介质软硬程度显著影响界面波的种类、相速度、位移和水压力分布;有限厚度流体/饱和多孔半空间界面处伪Scholte波相速度与界面波波长和流体厚度的比值有关;孔隙水中溶解的少量气体对剪切波的相速度的影响不大,对压缩波相速度、伪Scholte波相速度和孔隙水压力分布影响显著.  相似文献   

13.
In this paper, the problem of electroelastic waves propagating in piezoelectric hollow cylinders of sector cross section is studied for the case when the boundary surfaces of sector cut are covered by non-extensible membranes. The three-dimensional linear equations of motion for the piezoelectric cylinder are analytically integrated and different boundary conditions on the cylindrical surfaces yield frequency equations, which relate the frequencies of elastic waves to their wavenumbers. Numerical results for waveguides with various boundary conditions are presented to illustrate the approach. Analysis of the dispersion spectra is carried out, and cutoff frequencies are obtained and characterized; mode asymptotic behavior and amplitude distributions of wave characteristics are analyzed. The main effects of their transformation by variation of the angular measure and the ratio of inner and outer radii are discussed. The results obtained are in good agreement with the results for the special case of a hollow semicircular cylinder.  相似文献   

14.
A rigorous solution consistent with a plane wave approximation is given to the boundary problem for Maxwell’s equations for surface optical waves at the boundary with a nonlinear Kerr medium. Exact formulas for the flux intensity (J 0) and energy density (W 0) of these waves are derived depending on the parameters of the adjacent media and the propagation constant (ξ). It is shown that these variables as functions of ξ have minima. Thus, J 0 and W 0 increase sharply as the propagation constant deviates from the minimum value ξmin. Their values are greater, the larger the difference between the dielectric constants of the linear and nonlinear media is. An expression for the propagation velocity of a nonlinear surface wave is also obtained.  相似文献   

15.
We study transmission at a boundary between a right-handed medium (RHM: epsilon>0, mu>0) and a frequency dispersive left-handed medium [LHM: epsilon(omega)<0, mu(omega)<0 for some omega], both homogeneous and isotropic. In order to account for the dispersion, two types of signal spectra are considered. The first consists of two discrete frequencies, while the second is Gaussian. Explicit expressions for the time-domain fields are obtained, from which the time-averaged Poynting vectors and hence power flow vectors are calculated. In both cases, we find that waves refract at negative angles at a RHM-LHM interface.  相似文献   

16.
The influence of the molecular subsystem on the properties of surface-type waves (STW’s) propagating along a plasma-metal boundary is examined with consideration of the thermal motion of the electrons. The dynamics of the molecular subsystem is described using the equation for the polarization vector, which is equivalent to a quantum-mechanical treatment of a rarefied gas with phenomenological consideration of the dissipation. A dispersion equation for surface-type waves is obtained. The molecular subsystem influences both the phase velocity of the waves and the penetration depth. In the case of a weakly ionized medium there is a forbidden frequency band for surface-type waves. Zh. Tekh. Fiz. 67, 47–49 (December 1997)  相似文献   

17.
A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.  相似文献   

18.
The paper studies the properties of a structured continuum. The result of finite structure size is that difference relations fail to automatically pass into differential ones. Consideration of an infinitely small volume of the medium with laws of conservation is found impossible. The representative volume is only that volume of finite dimensions which contains a certain minimum set of elementary mesostructures. The impossibility to merely replace difference relations by differential relations lead to equilibrium equations and equations of motion of infinite order due to an infinite number of degrees of freedom in block media. golutions of these equations contain, in addition to ordinary elastic waves, a set of waves with widely different velocities, including extremely low velocities unbounded below. As shown earlier, small vibration in these media can be both decreasing and unlimitedly increasing. Hence, small vibrations are not always harmless. A dual role belongs to structure size dispersion. The latter weakens unstable vibrational phenomena, but extends the range of vibration frequencies involved in a catastrophic process such that catastrophic events may arise at quite low frequencies. The equilibrium equation can not hold in each infinitesimal volume of the medium because it is not representative for the medium as a whole. The equilibrium equation is valid only on average for sufficiently representative volumes. Hence, individual dynamic events are possible in the medium even if it is at equilibrium as a unit. This phenomenon is termed acoustic emission. The paper describes conditions under which acoustic emission initiates wave processes in their ordinary sense, i.e., initiation of waves under quasistatic stresses. The set of complex roots of the dispersion equation which are possible to interpret as the number of unstable solutions depends on the specific crack surface. At the logarithmic scale, this relation is almost linear and fits the Gutenberg-Richter earthquake repeatability law well-known in seismology.  相似文献   

19.
The propagation of in-plane (P-SV) waves in a symmetrically three-layered thick plate with a periodic array of interface cracks is investigated. The exact dispersion relation is derived based on an integral equation approach and Floquet's theorem. The interface cracks can be a model for interface damage, but a much simpler model is a recently developed spring boundary condition. This boundary condition is used for the thick plate and also in the derivation of plate equations with the help of power series expansions in the thickness coordinate. For low frequencies (cracks small compared to the wavelength) the three approaches give more or less coinciding dispersion curves, and this is a confirmation that the spring boundary condition is a reasonable approximation at low frequencies.  相似文献   

20.
The propagation of quasi-Rayleigh waves along an impedance-loaded plane boundary of an isotropic elastic half-space is studied theoretically. The dispersion equation of these waves is derived with allowance for the fact that an impedance load has both normal and tangential components. The conditions for the existence of such waves are analyzed depending on the magnitude and nature of each of these components. Specific examples of calculating the quasi-Rayleigh wave velocities are considered: for the models of surface and bulk cracked media, for a fluid layer in an elastic medium, and for a resonant load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号