首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some novel polystyrene-supported porphyrinatomanganese(III) in which alkyl group is bonded to the surface of polystyrene, PS-[Mn(HPTPP)Cl](CnH2n+1) (n=2, 6, 8, 18), have been synthesized. Their catalytic activities to hydroxylate cyclohexane in PS-[Mn(HPTPP)Cl](CnH2n+1)–O2–ascrobate system have been found to be higher compared with corresponding non-supported porphyrinatomanganese(III) and increase with the increase of the length of alkyl. These results are discussed in the point of view of metalloporphyrin microenvironment.  相似文献   

2.
A new route to improve the metalloporphyrin catalysts is developed, and it is to constitute heterogeneous composite catalysts with immobilized cationic metalloporphyrins and heteropolyanions. By using the method of synchronously synthesizing and immobilizing porphyrins on cross-linked polystyrene microspheres (CPS microspheres), the immobilized porphyrin TAPP-CPS microspheres, on which ternary amine (TA) group-containing phenyl porphyrin (PP) was immobilized, were first prepared, and then the immobilized cationic porphyrin TMPP-CPS microspheres, in whose structure trimethylammoniophenyl porphyrin (TMPP) was contained, were obtained via quaternization reaction. Finally, three immobilized metalloporphyrins, CoTMPP-CPS (shorten as CoP-CPS), MnTMPP-CPS (MnP-CPS) and FeTMPP-CPS (FeP-CPS), were gained through coordination reactions. These immobilized metalloporphyrins were composited with heteropolyanions by right of the mutual electrostatic interaction with phosphotungstic (PW) acid and phosphomolybdic (PMo) acid as reagents, respectively, resulting in several heterogeneous metalloporphyrin/heteropolyanion composite catalysts such as CoPPW-CPS, CoPPMo-CPS and MnPPW-CPS. The composite catalysts were used in the catalytic hydroxylation reaction of cyclohexane with molecular oxygen as oxidant, and their catalytic performances were investigated. The experimental results show that the heterogeneous composite catalysts have extraordinarily high catalytic activity in the hydroxylation reaction of cyclohexane by molecular oxygen, and the cyclohexanol yield in 8 h can get up to 45.5 %. More importantly, the catalytic activity of the heterogeneous composite catalysts is obviously higher than that of the immobilized cationic metalloporphyrins, and the enhanced catalytic activity is originated from a protection of heteropolyanions against the deactivation of metalloporphyrins.  相似文献   

3.
In this study, the catalytic activity of meso-tetra(n-propyl)porphyrinatomanganese(III) acetate, MnT(n-pr)(OAc) in oxidation of olefins and sulfides with tetra-n-butylammonium Oxone (TBAO), tetra-n-butylammonium periodate (TBAP), aqueous hydrogen peroxide, sodium periodate and Oxone in the presence of imidazole (ImH) has been studied. The comparison of catalytic performance of MnT(n-pr)P(OAc) and MnTPP(OAc) in oxidation of olefins with TBAP shows that while the latter is four times more efficient than the former, the extent of oxidative degradation of the former is ca. 3.5 times greater than the latter. The use of excess amount of styrene resulted in only a ca. 10 % increase in the catalyst stability, suggesting a mainly intramolecular mechanism for the catalyst degradation. On the other hand, in the case of TBAO, the oxidative degradation of the former is four times greater than the latter, but the catalytic performance of the latter for the oxidation of cyclohexene was only ca. 2 times larger than the former. This observation shows that the decreased catalytic performance of MnT(n-pr)P(OAc) relative to MnTPP(OAc) is essentially due to the high degree of degradation of the former. Due to the high degree of catalyst degradation, oxidation of olefins with periodate and Oxone in the presence of the two manganese porphyrins in aqueous solution (or with hydrogen peroxide in dichloromethane) gave little or no product. Oxidation of sulfides with TBAO and TBAP in the presence of MnT(n-pr)P(OAc) showed a conversion of ca. 15 % for the catalytic oxidation of sulfides to sulfones.  相似文献   

4.
A novel method to synthesize and immobilize porphyrins as well as manganese porphyrins on crosslinked polystyrene (CPS) microspheres was designed. The chloromethyl groups of chloromethylated CPS microspheres (CMCPS microspheres) were first oxidized to aldehyde groups via Kornblum oxidation reaction, obtaining aldehyde group-functionalized microspheres, and then, the synchronous synthesis and immobilization of porphyrins on CPS microspheres were carried out via the Adler reaction between solid–liquid phases, obtaining three kinds of functional microspheres, on which phenyl porphyrin (PP), p-chlorophenyl porphyrin (CPP) and p-nitrophenyl porphyrin (NPP) were immobilized. Finally, three manganese porphyrin-immobilized microspheres, MnPP–CPS, MnCPP–CPS and MnNPP–CPS, were prepared, these solid catalysts were used in the catalytic hydroxylation reaction of cyclohexane with molecular oxygen as oxidant, and their catalytic performances were mainly investigated in this work. Some surprising experimental results were obtained. The prepared immobilized manganese porphyrin catalysts display amazing catalytic activity and selectivity, and cyclohexane conversion can get up to 45?% and cyclohexanol selectivity in the reaction product can be up to 90–100?%.  相似文献   

5.
6.
A novel fluorescein–porphyrinatozinc(II) hybrid, Zn(Fl–PPTPP), was synthesized and characterized by u.v.–vis., i.r., 1H-n.m.r, ESMS and elemental analyses. The supramolecular self-assembly of Zn(Fl–PPTPP) with an imidazolyl-linked porphyrinatomanganese(III), Mn(III)(p-ImBPTPP)Cl, complex has been studied by fluorescence spectroscopic titration, VPO measurements and ESMS, which indicates that the formation of the Zn(Fl–PPTPP)–Mn(III)(p-ImBPTPP)Cl. supramolecular complex is driven by coordinative bonding formed by the coordination of imidazolyl group in Mn(III)(p-ImBPTPP)Cl to Zn(II) in Zn(Fl–PPTPP). The association constant of the supramolecular complex was calculated from the fluorescence spectroscopic titration data. It was found that the conformation of the Zn(Fl–PPTPP)–Mn(III)(p-ImBPTPP)Cl supramolecular complex, the steric hindrance and the electronic effect of the fluorescein group linked to porphyrin through a flexible long alkoxy chain are all acting on the association constant of the Zn(Fl–PPTPP)–Mn(III)(p-ImBPTPP)Cl supramolecular complex. It seems that the steric hindrance and the electronic effect of the fluorescein group are the primary factors effecting the association constant of Zn(Fl–PPTPP)–Mn(III)(p-ImBPTPP)Cl supramolecular complex, especially the electronic effect of the fluorescein group, which is the reason for the association constant of Zn(Fl–PPTPP)–Mn(III)(p-ImBPTPP)Cl being smaller than that of ZnTPP–Mn(III)(p-ImBPTPP)Cl.  相似文献   

7.
A new crown ether appended Fe(Ⅲ) porphyrin complex was prepared by sulfuryl chloride appended benzo-15-crown-5 to the meso position of meso-5,10,15,20-tetra(4-hydrophenyl)porphyrin,and it was applied to catalytic oxidation of cyclohexene with molecular oxygen without reductant,showing a remarkable catalytic activity(conversion is up to 94%) and selectivity for 2-cyclohexen-1-ol(73%).  相似文献   

8.
A series of Co(II) azamacrocyclic complexes, 12 Brunel, D, Bellocq, N, Sutra, P, Cauvel, A, Lasperas, M, Moreau, P, Di Renzo, F, Galarneau, A and Fajula, F. 1998. Coord. Chem. Rev., 178–180: 1085[Crossref], [Web of Science ®] [Google Scholar]aneN4, 14 De Vos, DE, Dams, M, Sels, BF and Jacobs, PA. 2002. Chem. Rev., 102: 3615[Crossref], [PubMed], [Web of Science ®] [Google Scholar]aneN4, Bzo2 12 Brunel, D, Bellocq, N, Sutra, P, Cauvel, A, Lasperas, M, Moreau, P, Di Renzo, F, Galarneau, A and Fajula, F. 1998. Coord. Chem. Rev., 178–180: 1085[Crossref], [Web of Science ®] [Google Scholar]aneN4 and Bzo2 14 De Vos, DE, Dams, M, Sels, BF and Jacobs, PA. 2002. Chem. Rev., 102: 3615[Crossref], [PubMed], [Web of Science ®] [Google Scholar]aneN4, have been encapsulated in the nanocavity of zeolite-Y by a one pot template condensation reaction. Co(II) complexes with azamacrocyclic ligands were entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)cobalt(II)], [Co(N–N)2]-NaY, in the supercages of the zeolite, and (ii) in situ condensation of the cobalt(II) precursor complex with diethyloxalate. The new host/guest nanocomposite materials (HGNM) have been characterized by FTIR, DRS and UV-Vis spectroscopic techniques, XRD and elemental analysis, as well as nitrogen adsorption. These complexes (neat and HGNM) were used for epoxidation of styrene with O2 as oxidant in different solvents. Electronic spectra of the reaction mixture indicated oxidation proceeds through a free radical mechanism.  相似文献   

9.
Trimesityliridium(III) (mesityl = 2,4,6-trimethylphenyl) reacts with O(2) to form oxotrimesityliridium(V), (mes)(3)Ir=O, in a reaction that is cleanly second order in iridium. In contrast to initial reports by Wilkinson, there is no evidence for substantial accumulation of an intermediate in this reaction. The oxo complex (mes)(3)Ir=O oxidizes triphenylphosphine to triphenylphosphine oxide in a second-order reaction with DeltaH++ = 10.04 +/- 0.16 kcal/mol and DeltaS++ = -21.6 +/- 0.5 cal/(mol.K) in 1,2-dichloroethane. Triphenylarsine is also oxidized, though over an order of magnitude more slowly. Ir(mes)(3) binds PPh(3) reversibly (K(assoc) = 84 +/- 3 M(-1) in toluene at 20 degrees C) to form an unsymmetrical, sawhorse-shaped four-coordinate complex, whose temperature-dependent NMR spectra reveal a variety of dynamic processes. Oxygen atom transfer from (mes)(3)Ir=O and dioxygen activation by (mes)(3)Ir can be combined to allow catalytic aerobic oxidations of triphenylphosphine at room temperature and atmospheric pressure with overall activity (approximately 60 turnovers/h) comparable to the fastest reported catalysts. A kinetic model that uses the rates measured for dioxygen activation, atom transfer, and phosphine binding describes the observed catalytic behavior well. Oxotrimesityliridium does not react with sulfides, sulfoxides, alcohols, or alkenes, apparently for kinetic reasons.  相似文献   

10.
11.
Three isostructural disklike heptanuclear FeIII compounds of the general formula [FeIII7(mu3-O)3(L)3(mu-O2CCMe3)6(eta1-O2CCMe3)3(H2O)3], where L represents a di- or triethanolamine moiety, display a three-blade propeller topology, with the central Fe atom representing the axle or axis of the propeller. This motif corresponds to the theoretical model of a frustrated Heisenberg star, which is one of the very few solvable models in the area of frustrated quantum-spin systems and can, furthermore, be converted to an octanuclear cage for the case where L is triethanolamine to give [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(N3)3].1/2MeCN.1/2H2O or [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(SCN)3].2MeCN when treated with excess NaN3 or NH4SCN, respectively. The core structure is formally derived from that of the heptanuclear compounds by the replacement of the three aqua ligands by an {Fe(tea)} moiety, so that the 3-fold axis of the propeller is now defined by two central FeIII atoms. Magnetic studies on two of the heptanulcear compounds established unequivocally S = 5/2 spin ground state for these complexes, consistent with overall antiferromagnetic interactions between the constituent FeIII ions.  相似文献   

12.
Ni(II) complexes of [12]aneN4: 1,4,7,10-tetraazacyclododecane-2,3,8,9-tetraone; [14]aneN4: 1,4,8,11-tetraazacyclotetradecane-2,3,9,10-tetraone; Bzo2[12]aneN4: dibenzo-1,4,7,10-tetraazacyclododecane-2,3,8,9-tetraone and Bzo2[14]aneN4: dibenzo-1,4,8,11-tetraazacyclotetradecane-2,3,9,10-tetraone have been encapsulated in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)nickel(II)]; [Ni(N–N)2]–NaY; in the supercages of the zeolite, and (ii) in situ condensation of the nickel(II) precursor complex with diethyloxalate. The new host-guest nanocatalyst (HGN) were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV/Vis, XRD, BET, DRS) and then were used for oxidation of cyclohexene with molecular oxygen.  相似文献   

13.
环己醇和环己酮(KA油)是制备尼龙所需材料己二酸和己内酰胺的重要中间体,也可用作油漆、农药和染料等的溶剂以及染色和褪光丝的均化剂等.工业上制取KA油的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法最为普遍,是非常重要的工业过程.为获得适宜的KA油选择性,工业上普遍采用Co盐为催化剂,将环己烷氧化单程转化率控制在5.0%以下,从而使得产物选择性达到70%以上.该环己烷氧化制KA油过程不仅生产效率较低,而且所用均相催化剂因分离困难而不能重复使用.因此,当前关于环己烷氧化反应催化剂的研究均是围绕多相催化剂进行.氧气选择性氧化环己烷反应因具有更高的原子经济性而逐渐成为环己烷氧化法制KA油研究中最具挑战性的课题.该反应是自由基机理,而Co~(2+),Cr~(3+),Mn~(2+)和Ce~(2+)等金属离子可以促进自由基链反应,因此含有这些金属的多相催化剂被广泛用于该反应.另一方面,AlPO-n系列分子筛由于具有特殊的孔结构和一定的表面酸性,在催化反应中显示出较大的应用潜力.如果进行杂原子掺杂,通过改变分子筛骨架的电荷平衡,可以有效提高其表面酸性.例如磷酸硅铝分子筛(SAPO-5)具有中等强度的酸性和良好的择形性,因而作为固体酸催化剂广泛用于乙醇脱水、甲醇制烯烃、丙烯聚合和苯乙烯环氧化等反应,表现出较高的选择性和良好的稳定性.本文以传统均相Co盐催化剂的多相化为出发点,制备了Co掺杂SAPO-5与分子筛催化剂(Co-SAPO-5),考察了Co掺杂量对催化剂结构、表面性质以及氧气选择性氧化环己烷反应性能的影响.结果表明,一部分Co进入分子筛骨架,同时有少量Co以氧化钻形式高度分散在SAPO-5表面.Co掺杂对SAOP-5催化剂比表面积没有显著影响,但可使其孔体积减小.相反,Co掺杂可以提高SAOP-5分子筛表面B酸性位数量和总酸量.活性测试结果表明,环己烷转化率随着Co-SAPO-5催化剂中Co含量的增加而增加,但KA油选择性在转化率高于6.3%时急剧下降.还考察了反应温度、反应时间、初始氧气压力和催化剂用量对Co-SAPO-5分子筛催化剂性能的影响,得到了最优反应条件.以Co-SAPO-5-0.2(Co/Si摩尔比为0.2)分子筛为催化剂时,KA油总收率最高可达7.8%.另外,Co-SAPO-5催化剂在环己烷氧化反应中显示出很好的稳定性,Co-SAPO-5-0.2催化剂套用6次后活性几乎没有变化.  相似文献   

14.
New chelate bis-heterocyclic-carbene complexes of Rh(I) and Rh(III) have been obtained and fully characterized. The molecular structures of the new species have been determined. The synthesis of the compounds starts from the bisimidazolium precursors, which are deprotonated with NEt(3) under mild reaction conditions, leading to coordination to the Rh complex. The Rh(III) compounds are generated from Rh(I) and [Rh(II)](2) species, although there is no apparent oxidizing agent in the reaction media.  相似文献   

15.
Styrene-divinylbenzene copolymer with 5% and 15% cross linked were synthesised by suspension polymerization, chloromethylated and treated with 1,2-diaminopropane for the introduction of the ligand. The polymer beads modified with ligand was kept in contact with PdCl2 to form the metal complex on the surface of the polymer. The catalysts thus prepared were characterized by various techniques such as FTIR, reflectance UV–vis spectroscopy, SEM, EPR, TGA and ESCA. Physico-chemical properties such as moisture content, bulk density, surface area by BET method and swelling with different solvents were studied. The catalytic activity of synthesised catalysts was tested for hydrogenation of cyclohexene as a model reaction. Kinetic studies were carried out by varying different parameters. Energy of activation as well as entropy of activation was calculated. The recycling efficiency of the catalysts was also studied. A probable reaction mechanism was proposed.  相似文献   

16.
Three types of novel silica-metalloporphyrins hybrid materials, Si-S-APTCPPFe, Si-S-APTCPPMn and Si-S-APTCPPCo, were prepared at room temperature by sol–gel method involving a thiol-ene polymerization reaction of 5-(4-allyloxy)phenyl-10,15,20-tri(4-chlorophenyl)porphyrin (APTCPP) with 3-mercaptopropyltrimethoxysilane (MPS). The hybrid materials were characterized by XRD, SEM, FT–IR, UV–Vis and TG, and were investigated as catalysts for the aerobic oxidation of cyclohexane. It is found that these hybrid materials are more efficient catalysts than the analogous non-supported metalloporphyrins for cyclohexane hydroxylation in metalloporphyrin–O2–ascrobate system and the metal ion in the porphyrins significantly affected the catalytic efficiencies of these hybrid materials.  相似文献   

17.
New luminescent oxygen sensors have been prepared by covalent attachment of iridium complex luminophores to a silicone polymer. The oxygen sensor properties of these novel materials were compared to related sensors in which the luminophore is dispersed within the polymer matrix. Covalently bound luminophore materials showed increased sensitivity to oxygen over dispersions in pure silicone polymer as well as in blends with polystyrene, which was added to improve the mechanical properties of the material.  相似文献   

18.
Chromium(III) complexes of Schiff bases resulting from the condensation of one mole of diacetyl with two moles of ethylene-diamine or 1,3 diaminopropane has been isolated by metal template reaction. The isolated complexes have been assigned cis configurations.  相似文献   

19.
A new type of catalyst for the hydrosilylation of unsaturated monomers with dichloromethylsilane (DCMS) was prepared, which consisted of thiolmethylene-substituted styrene–divinyl benzene copolymer and platinum. When using DCMS as a hydrosilylation agent, these catalysts showed a high activity in the hydrosilylation of vinyl and acetylene monomers as styrene, alkyl vinyl silanes, acetylene, phenyl acetylene, butyl acrylate. The activities of catalysts were not significantly reduced even after 20 reuse cycles.  相似文献   

20.
The rhenium(V) monooxo complexes (hoz)2Re(O)Cl (1) and [(hoz)2Re(O)(OH2)][OTf] (2) have been synthesized and fully characterized (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline). A single-crystal X-ray structure of 2 has been solved: space group = P1, a = 13.61(2) A, b = 14.76(2) A, c = 11.871(14) A, alpha = 93.69(4) degrees, beta = 99.43(4) degrees, gamma = 108.44(4) degrees, Z = 4; the structure was refined to final residuals R = 0.0455 and Rw = 0.1055. 1 and 2 catalyze oxygen atom transfer from aryl sulfoxides to alkyl sulfides and oxygen-scrambling between sulfoxides to yield sulfone and sulfide. Superior catalytic activity has been observed for 2 due to the availability of a coordination site on the rhenium. The active form of the catalyst is a dioxo rhenium(VII) intermediate, [Re(O)2(hoz)2]+ (3). In the presence of sulfide, 3 is rapidly reduced to [Re(O)(hoz)2]+ with sulfoxide as the sole organic product. The transition state is very sensitive to electronic influences. A Hammett correlation plot with para-substituted thioanisole derivatives gave a reaction constant rho of -4.6 +/- 0.4, in agreement with an electrophilic oxygen transfer from rhenium. The catalytic reaction features inhibition by sulfides at high concentrations. The equilibrium constants for sulfide binding to complex 2 (cause of inhibition), K2 (L x mol(-1)), were determined for a few sulfides: Me2S (22 +/- 3), Et2S (14 +/- 2), and tBu2S (8 +/- 2). Thermodynamic data, obtained from equilibrium measurements in solution, show that the S=O bond in alkyl sulfoxides is stronger than in aryl sulfoxides. The Re=O bond strength in 3 was estimated to be about 20 kcal x mol(-1). The high activity and oxygen electrophilicity of complex 3 are discussed and related to analogous molybdenum systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号