首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a waveguide modeled by the Laplacian in a straight planar strip with the Dirichlet condition on the upper boundary, while on the lower one we impose periodically alternating boundary conditions with a small period. We study the case when the homogenization leads us to the Neumann boundary condition on the lower boundary. We establish the uniform resolvent convergence and provide the estimates for the rate of convergence. We construct the two-terms asymptotics for the first band functions of the perturbed operator and also the complete two-parametric asymptotic expansion for the bottom of its spectrum.  相似文献   

2.
We consider a planar waveguide modeled by the Laplacian in a straight infinite strip with the Dirichlet boundary condition on the upper boundary and with frequently alternating boundary conditions (Dirichlet and Neumann) on the lower boundary. The homogenized operator is the Laplacian subject to the Dirichlet boundary condition on the upper boundary and to the Dirichlet or Neumann condition on the lower one. We prove the uniform resolvent convergence for the perturbed operator in both cases and obtain the estimates for the rate of convergence. Moreover, we construct the leading terms of the asymptotic expansions for the first band functions and the complete asymptotic expansion for the bottom of the spectrum. Bibliography: 17 titles. Illustrations: 3 figures.  相似文献   

3.
In a planar infinite strip with a fast oscillating boundary we consider an elliptic operator assuming that both the period and the amplitude of the oscillations are small. On the oscillating boundary we impose Dirichlet, Neumann or Robin boundary condition. In all cases we describe the homogenized operator, establish the uniform resolvent convergence of the perturbed resolvent to the homogenized one, and prove the estimates for the rate of convergence. These results are obtained as the order of the amplitude of the oscillations is less, equal or greater than that of the period. It is shown that under the homogenization the type of the boundary condition can change.  相似文献   

4.
We consider a magnetic Schrödinger operator in a planar infinite strip with frequently and non-periodically alternating Dirichlet and Robin boundary conditions. Assuming that the homogenized boundary condition is the Dirichlet or the Robin one, we establish the uniform resolvent convergence in various operator norms and we prove the estimates for the rates of convergence. It is shown that these estimates can be improved by using special boundary correctors. In the case of periodic alternation, pure Laplacian, and the homogenized Robin boundary condition, we construct two-terms asymptotics for the first band functions, as well as the complete asymptotics expansion (up to an exponentially small term) for the bottom of the band spectrum.  相似文献   

5.
We consider a singularly perturbed boundary-value eigenvalue problem for the Laplace operator in a cylinder with rapidly alternating type of the boundary condition on the lateral surface. The change of the boundary conditions is realized by splitting the lateral surface into many narrow strips on which the Dirichlet and Neumann conditions alternate. We study the case in which the averaged problem contains the Dirichlet boundary condition on the lateral surface. In the case of strips with slowly varying width we construct the first terms of the asymptotic expansions of eigenfunctions; moreover, in the case of strips with rapidly varying width we obtain estimates for the convergence rate.  相似文献   

6.
The asymptotic behavior of solutions to boundary value problems for the Poisson equation is studied in a thick two-level junction of type 3:2:2 with alternating boundary conditions. The thick junction consists of a cylinder with ε-periodically stringed thin disks of variable thickness. The disks are divided into two classes depending on their geometric structure and boundary conditions. We consider problems with alternating Dirichlet and Neumann boundary conditions and also problems with different alternating Fourier (Neumann) conditions. We study the influence of the boundary conditions on the asymptotic behavior of solutions as ε → 0. Convergence theorems, in particular, convergence of energy integrals, are proved. Bibliography: 31 titles. Illustrations: 1 figure.  相似文献   

7.
This paper is concerned with the standard Lp estimate of solutions to the resolvent problem for the Stokes operator on an infinite layer with ‘Neumann–Dirichlet‐type’ boundary condition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
We apply the trial method for the solution of Bernoulli's free boundary problem when the Dirichlet boundary condition is imposed for the solution of the underlying Laplace equation, and the free boundary is updated according to the Neumann boundary condition. The Dirichlet boundary value problem for the Laplacian is solved by an exponentially convergent boundary element method. The update rule for the free boundary is derived from the linearization of the Neumann data around the actual free boundary. With the help of shape sensitivity analysis and Banach's fixed‐point theorem, we shed light on the convergence of the respective trial method. Especially, we derive a stabilized version of this trial method. Numerical examples validate the theoretical findings.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton–Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann or oblique boundary condition, the state constraint boundary condition and Dirichlet boundary condition. We establish general convergence results for viscosity solutions to asymptotic solutions as time goes to infinity via an approach based on PDE techniques. These results are obtained not only under general conditions on the Hamiltonians but also under weak conditions on the domain and the oblique direction of reflection in the Neumann case.  相似文献   

10.
This paper is concerned with a family of second‐order elliptic systems in divergence form with rapidly oscillating periodic coefficients. We initiate the study of homogenization and boundary layers for Neumann problems with first‐order oscillating boundary data. We identify the homogenized system and establish the sharp rate of convergence in L2 in dimension three or higher. Regularity estimates are also obtained for the homogenized boundary data in both Dirichlet and Neumann problems. The results are used to establish a higher‐order convergence rate for Neumann problems with nonoscillating data. © 2018 Wiley Periodicals, Inc.  相似文献   

11.
The aim of the paper is to compare the asymptotic behavior of solutions of two boundary value problems for an elliptic equation posed in a thin periodically perforated plate. In the first problem, we impose homogeneous Dirichlet boundary condition only at the exterior lateral boundary of the plate, while at the remaining part of the boundary Neumann condition is assigned. In the second problem, Dirichlet condition is also imposed at the surface of one of the holes. Although in these two cases, the homogenized problem is the same, the asymptotic behavior of solutions is rather different. In particular, the presence of perturbation in the boundary condition in the second problem results in logarithmic rate of convergence, while for non-perturbed problem the rate of convergence is of power-law type.  相似文献   

12.
We study estimates for square roots of second order elliptic non necessarily selfadjoint operators in divergence form on Lipschitz domains subject to Dirichlet or to Neumann boundary conditions, pursuing our work [4] where we considered operators on . We obtain among other things for all if L is real symmetric and the domain bounded, which is new for . We also obtain similar results for perturbations of constant coefficients operators. Our methods rely on a singular integral representation, Calderón-Zygmund theory and quadratic estimates. A feature of this study is the use of a commutator between the resolvent of the Laplacian (Dirichlet and Neumann) and partial derivatives which carries the geometry of the boundary. Received: 12 January 2000 / Published online: 4 May 2001  相似文献   

13.
The aim of the paper is to compare the asymptotic behavior of solutions of two boundary value problems for an elliptic equation posed in a thin periodically perforated plate. In the first problem, we impose homogeneous Dirichlet boundary condition only at the exterior lateral boundary of the plate, while at the remaining part of the boundary Neumann condition is assigned. In the second problem, Dirichlet condition is also imposed at the surface of one of the holes. Although in these two cases, the homogenized problem is the same, the asymptotic behavior of solutions is rather different. In particular, the presence of perturbation in the boundary condition in the second problem results in logarithmic rate of convergence, while for non-perturbed problem the rate of convergence is of power-law type.  相似文献   

14.
We consider a boundary value problem in a model domain periodically perforated along the boundary. We assume that the homogeneous Neumann condition is posed on the external boundary and the homogeneous Dirichlet condition is posed on the boundary of the cavities. A limit (homogenized) problem is obtained. We prove the convergence of the solutions, eigenvalues, and eigenfunctions of the original problem to the solutions, eigenvalues, and eigenfunctions, respectively, of the limit problem.  相似文献   

15.
The aim of the paper is to characterise sequences of domains for which solutions to an elliptic equation with Dirichlet boundary conditions converge to a solution of the corresponding problem on a limit domain. Necessary and sufficient conditions are discussed for strong and uniform convergence for the corresponding resolvent operators. Examples are given to illustrate that most results are optimal.  相似文献   

16.
Mixed boundary value problems are characterised by a combination of Dirichlet and Neumann conditions along at least one boundary. Historically, only a very small subset of these problems could be solved using analytic series methods (“analytic” is taken here to mean a series whose terms are analytic in the complex plane). In the past, series solutions were obtained by using an appropriate choice of axes, or a co-ordinate transformation to suitable axes where the boundaries are parallel to the abscissa and the boundary conditions are separated into pure Dirichlet or Neumann form. In this paper, I will consider the more general problem where the mixed boundary conditions cannot be resolved by a co-ordinate transformation. That is, a Dirichlet condition applies on part of the boundary and a Neumann condition applies along the remaining section. I will present a general method for obtaining analytic series solutions for the classic problem where the boundary is parallel to the abscissa. In addition, I will extend this technique to the general mixed boundary value problem, defined on an arbitrary boundary, where the boundary is not parallel to the abscissa. I will demonstrate the efficacy of the method on a well known seepage problem.  相似文献   

17.
A nonlinear diffusive equation with moving boundaries is analyzed by constructing the corresponding Dirichlet‐to‐Neumann map. In particular, the Dirichlet boundary value and the initial condition are used to derive the unknown Neumann boundary value. Then, a contraction‐mapping technique is used to prove existence and uniqueness of the solution for small times.  相似文献   

18.
The Neumann problem for Laplace's equation in a polygonal domain is associated with the exterior Dirichlet problem obtained by requiring the continuity of the potential through the boundary. Then the solution is the simple layer potential of the charge q on the boundary. q is the solution of a Fredholm integral equation of the second kind that we solve by the Galerkin method. The charge q has a singular part due to the corners, so the optimal order of convergence is not reached with a uniform mesh. We restore this optimal order by grading the mesh adequately near the corners. The interior Dirichlet problem is solved analogously, by expressing the solution as a double layer potential.  相似文献   

19.
We prove exponential rates of convergence of hp-version finite element methods on geometric meshes consisting of hexahedral elements for linear, second-order elliptic boundary value problems in axiparallel polyhedral domains. We extend and generalize our earlier work for homogeneous Dirichlet boundary conditions and uniform isotropic polynomial degrees to mixed Dirichlet–Neumann boundary conditions and to anisotropic, which increase linearly over mesh layers away from edges and vertices. In particular, we construct \(H^1\)-conforming quasi-interpolation operators with N degrees of freedom and prove exponential consistency bounds \(\exp (-b\root 5 \of {N})\) for piecewise analytic functions with singularities at edges, vertices and interfaces of boundary conditions, based on countably normed classes of weighted Sobolev spaces with non-homogeneous weights in the vicinity of Neumann edges.  相似文献   

20.
We study the asymptotic behavior of eigenelements of boundary value problems in a domain Ω ⊂ ℝd, d ⩾ 3, with rapidly alternating type of boundary conditions. The density is equal to 1 outside tiny domains and is equal to ε−m inside them, where ε is a small parameter. These domains (concentrated masses) of diameter εa are located on the boundary at a positive distance of order O(ε) from each other, where a = const. The Dirichlet boundary condition is on parts of ∂Ω that are tangent to concentrated masses, and the Neumann boundary condition is stated outside concentrated masses. We construct the limit (homogenized) operator, prove the convergence of eigenelements of the original problem to the eigenelements of the limit (homogenized) problem in the case m ⩾ 2, and estimate the difference between the eigenelements. Bibliography: 79 titles. Illustrations: 4 figures. __________ Translated from Problemy Matematicheskogo Analiza, No. 32, 2006, pp. 45–75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号