首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Structure of reaction products obtained from tris(diethylamino)phosphine with N,Ndialkylpolyfluoroalkanethioamides depends on the length of the polyfluoroalkyl substituent in the latter. In the case of morpholides of perfluorothiopropionic and perfluorothiobutyric acids the main reaction products are fluoro-containing aminoacetylenes: 4-(perfluoroalkan-1-yn-1-yl)morpholines, and also tris(diethylamino)phosphine sulfide and tris(diethylamino)difluorophosphorane. From morpholides or piperidides of ω-H-perfluorothiovaleric acid with a longer perfluoroalkyl substituents amides of cis- and trans-perfluoropent-2-enethiocarboxylic acids were obtained.  相似文献   

2.
The reaction of N‐thioamido amidines 1 with tris(dimethylamino)phosphine or bis(diethylamino)phenylphosphine in refluxing toluene leads to the 1,3,5,2λ3‐triazaphosphorines 2 and 3 , respectively. The condensation results in the release of two molecules of dialkylamine. The sulfuration of the trivalent phosphorus atoms was achieved by the reaction with elemental sulfur, followed by heating in toluene. The structure of the triazaphosphorines 2 and 3 and their thione derivatives 4 and 5 were readily elucidated by means of 1H, 13C, and 31P NMR spectroscopy and mass spectrometry. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:272–277, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20546  相似文献   

3.
Tris(2‐pyridyl)­phosphine oxide, (I), C15H12N3OP, is isomorphous with tris(2‐pyridyl)­phosphine. Because of a combination of C—H⋯O and C—H⋯N interactions, the crystal packing is denser in the title compound than in the related compounds tri­phenyl­phosphine oxide and tris(2‐pyridyl)­phosphine.  相似文献   

4.
Abstract

The condensation of N-phenyl-N′-(2-hydroxylphenyl)urea or N-phenyl-N′-(2-aminophenyl)urea with tris(dia1kylamino)phosphine afforded derivatives of 4,5-benzo-1,3,2-oxaza (or diaza)-phospholane which formed intramolecular hydrogen bond. The cleavage of the amide bond to give N,N-dialky1-N′-phenylurea together with polymers of 1,3,2-benzodiazaphosphole was observed in the latter reaction.  相似文献   

5.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

6.
Two new cationic rhodium(I) complexes with a chiral nitrogen‐containing BINOL‐based diphosphite or phosphonite ligand have been synthesized. Chiral diphosphite was prepared by the reaction of N‐phenyldiethanolamine with two equivalents of [(R)‐(1,1′‐binaphthalene‐2,2′‐diyl)]chlorophosphite. In its rhodium complex the ligand is bound to the metal via both phosphorus atoms, and a Rh–N interaction is also possible. Synthesis of the chiral phosphonite was achieved by the reaction of 2‐(N,N‐dimethylaminophenyl)‐bis(diethylamino)phosphine with one equivalent of R‐BINOL. In its rhodium complex, the ligand is P,N‐bonded, forming a five‐membered chelate ring. The first complex was applied to hydroformylation of styrene and displayed high activity and chemo‐ and regioselectivity, but unfortunately no asymmetric induction was found. Both complexes were evaluated in the hydrogenation of prochiral olefins with moderate activities and low enantioselectivities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A group of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline derivatives have been synthesized in the reaction of N1,N1‐diethyl‐N2‐arylchlorocarboxyamidines with cyanamide in the presence of T1Cl4 as a catalyst. Such quinazolines decompose into the corresponding quinazolones in dilute aqueous HC1 solutions at higher temperature. Hydrolysis rates of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline and 2‐(N,N‐diethylamino)‐4‐(N,N‐dimethylamino)‐quinazoline have been determined to observe the influence of substituents at the 4‐amino group upon the hydrolysis. pKa values have been also determined for these compounds and analyzed in conjunction with the Hammett σ constants.  相似文献   

8.

The reaction of N1-tosylamidrazones with tris(dimethylamino)phosphine and P,P-dichlorophenylphosphine oxide provides respectively a convenient access to the new 3-(dimethylamino)-1,2,4,3-triazaphospholines and 1,2,4,3-triazaphosphlines-3-oxide. The structure of all obtained products is confirmed by NMR (1 H, 31 P, 13C) and IR spectroscopy.  相似文献   

9.
Synthesis of the title compounds 4(a – i) was accomplished through a two‐step process. The synthetic route involves the cyclization of equimolar quantities of 2,2′‐methylene(methyl)bis(4,6‐di‐tert‐butyl‐phenol) ( 1 ) with tris‐(2‐chloro‐ethyl) phosphite ( 2a ), tris‐(2‐bromo‐ethyl) phosphine ( 2b ), and tris‐bromo methyl phosphine ( 2c ) in the presence of sodium hydride in dry tetrahydrofuran at 45–50°C. They were further converted to the corresponding oxides, sulfides, and selenides under N2 atmosphere by reacting them with hydrogen peroxide, sulfur, and selenium, respectively ( 4a – c , 4d – f, and 4g – i ). But the compounds 6a , b were prepared by the direct cyclocondensation of equimolar quantities of 1 with (2‐chloro‐ethyl)‐phosphonic acid dibromomethyl ester ( 5a ) and (2‐chloro‐ethyl)‐phosphonic acid bis(2‐bromo‐ethyl) ester ( 5b ) in the presence of sodium hydride in dry tetrahydrofuran at 45–50°C in moderate yields. All the newly synthesized compounds 4 ( a – i ) and 6 ( a – b ) exhibited moderate in vitro antibacterial and antifungal activities.  相似文献   

10.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   

11.
Elemental phosphorus (red or white) reacts with allyl chloride and allyl bromide in a two-phase system aqueous KOH-organic solvent to form tertiary symmetrical and mixed phosphine oxides among which tris(prop-2-enyl)-, bis(prop-2-enyl)[(E)-prop-1-enyl]-, bis(prop-2-enyl)[(Z)-prop-1-enyl]-, (prop-2-enyl)[(E)-prop-1-enyl][(Z)-prop-1-enyl]-, bis[(E)-prop-1-enyl](prop-2-enyl)-, bis[(Z)-prop-1-enyl](prop-2-enyl)-, tris-[(E)-prop-1-enyl]-, and bis[(E)-prop-1-enyl][(Z)-prop-1-enyl]phosphine oxides were identified. The conditions (room temperature, 60% aqueous KOH-dioxane) allowing preparation from white phosphorus and allyl bromide of tris(prop-2-enyl)- and bis(prop-2-enyl)[(E)-prop-1-enyl]phosphine oxides as major products in the total yield of up to 96% were found.  相似文献   

12.
Symmetrical and unsymmetrical tertiary phosphine oxides containing benzyl and 5-chloro-2-thienyl radicals stereoselectively react with benzaldehyde in the sodium amide-THF system to form the E isomers of 1-organyl-2-phenylethene and diorganylphosphinic acids in high yields. Triethyl, tris(2-phenyl- ethyl)-, and tris[(4-methoxyphenyl)methyl]phosphine oxides under the above-mentioned conditions do not react with benzaldehyde.  相似文献   

13.
Organometal Phosphine Substituted Transition Metal Complexes. XXV. Organoelement(IVb) Phosphine Derivatives of Tetracarbonyl(trimethyltin)cobalt Tetracarbonyl(trimethyltin)cobalt reacts with di(tert-butyl)phosphine, tri(tert-butyl)phosphine, di(tert-butyl)chlorophosphine as well as with tris(trimethylgermanium)- and tris(trimethyltin)phosphine with displacement of one CO ligand and formation of the corresponding organoelement(IVb) phosphine substituted tricarbonyl(trimethyltin)cobalt complexes. The i.r., Raman, 1H-n.m.r., and 31P-n.m.r. spectra of the complexes are reported are reported and discussed.  相似文献   

14.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

15.
A series of well‐defined amphiphilic graft copolymer containing hydrophobic polyallene‐based backbone and hydrophilic poly(2‐(diethylamino)ethyl acrylate) (PDEAEA) side chains was synthesized by sequential living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO) and single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl acrylate (DEAEA). Ni‐catalyzed living coordination polymerization of MHDO was first performed in toluene to give a well‐defined double‐bond‐containing poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer with a low polydispersity (Mw/Mn = 1.10). Next, 2‐chloropropionyl chloride was used for the esterification of pendant hydroxyls in every repeating unit of the homopolymer so that the homopolymer was converted to PMHDO‐Cl macroinitiator. Finally, SET‐LRP of DEAEA was initiated by the macroinitiator in tetrahydrofuran/H2O using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford well‐defined PMHDO‐g‐PDEAEA graft copolymers (Mw/Mn ≤ 1.22) through the grafting‐from strategy. The critical micelle concentration (cmc) was determined by ?uorescence spectroscopy with N‐phenyl‐1‐naphthylamine as probe and the micellar morphology was visualized by transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The Mannich reaction of isatin with different primary and secondary amines and effect of the substituent in aromatic amines on the reaction pathway is studied. The efficient high‐yield synthesis of novel isoindigo derivatives by the mild deoxygenation reaction of the corresponding isatins with tris(diethylamino)phosphine is described.  相似文献   

17.
We report the synthesis and properties of the much sought-after tris(1,1,3,3-tetramethylguanidinyl) phosphine P(tmg)3, a crystalline, superbasic phosphine accessible through a short and scalable procedure from the cheap and commercially available bulk chemicals 1,1,3,3-tetramethylguanidine, tris(dimethylamino)-phosphine and phosphorus trichloride. The new phosphine exhibits exceptional electron donor properties and readily forms transition metal complexes with gold(I), palladium(II) and rhodium(I) precursors. The formation of zwitterionic Lewis base adducts with carbon dioxide and sulfur dioxide was explored. In addition, the complete series of phosphine chalcogenides was prepared from the reaction of P(tmg)3 with N2O and the elemental chalcogens.  相似文献   

18.
The title compounds, ethyldiphenylphosphine–dithiomono­metaphosphoryl chloride, EtPh2PPS2Cl, C14H15ClP2S2, (I), and tris‐n‐propyl­phosphine–di­thio­monometa­phospho­ryl chloride and bromide, nPr3PPS2Cl, C9H21ClP2S2, (II), and nPr3PPS2Br, C9H21BrP2S2, (III), respectively, are the first phosphine‐stabilized di­thio­monometa­phospho­ryl halides to be structurally characterized. In the tris‐n‐propyl­phosphine derivatives, the central PP donor–acceptor bond becomes longer in the order bromo < chloro < fluoro. Substitution of the tris‐n‐propyl­phosphine group in (II) by the more bulky ethyl­di­phenyl­phosphine group also leads to a longer PP bond. These structural features agree with the observed 31P NMR data. In (II) and (III), the central P—P bond coincides with the crystallographic threefold axis, entailing site‐occupational disorder for the S2Y group.  相似文献   

19.
Isatin derivatives containing a 4-nitrophenyl group in the side chain or a nitro group in the aromatic fragment reacted with tris(diethylamino)phosphine to give the corresponding isoindigo derivatives with high yields and chemoselectivity.  相似文献   

20.
Electroluminescent devices were fabricated using a holetransporting polymer, poly[N-[p-N′ -phenyl-N′-[1,1′-biphenyl-4′-[N″-phenyl-N″-(2-methylphenyl)amino]-4-amino]]phenyl methacrylamide] (PTPDMA), and tris(8-quinolinolato)aluminum(III) complex, Alq, as the hole transport layer and the emitter layer, respectively. A device structure of glass substrate/indium–tin–oxide/PTPDMA/Alq/Mg:Ag was employed. Hole injection from the electrode through the PTPDMA layer to the Alq layer and concomitant electroluminescence from the Alq layer were observed. Bright green luminescence with a luminance of 20,000 cd/m2 was obtained at a drive voltage of 14 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号