首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study we have applied epitope excision and epitope extraction strategies, combined with matrix assisted laser desorption/ionization mass spectrometry, to determine the fine structure of epitopes recognized by a polyclonal antibody to human immunodeficiency virus envelope glycoprotein gp120. This is the first application of this approach to epitope mapping on a large, heavily glycosylated protein. In the epitope excision method, gp120 in the native form is first bound to the antibody immobilized on sepharose beads and cleaved with endoproteinase enzymes. In the epitope extraction method, the gp120 was first proteolytically cleaved and then allowed to react with the immobilized antibody. The fragments that remain bound to the antibody, after repeated washing to remove the unbound peptides, contain the antigenic region that is recognized by the antibody, and the bound peptides in both methods can be characterized by direct analysis of the immobilized antibody by matrix assisted laser desorption ionization/mass spectrometry. In this study we have carried out epitope excision and extraction experiments with three different enzymes and have identified residues 472–478 as a major epitope. In addition, antigenic regions containing minor epitopes have also been identified.  相似文献   

2.
Possible inhibitors preventing human immunodeficiency virus type 1 (HIV-1) entry into the cells are recognized as hopeful next-generation anti-HIV-1 drugs. It is highly desirable to develop a potent inhibitor blocking binding of glycoprotein CD4 of the cell with glycoprotein gp120 of HIV-1, because the gp120-CD4 binding is the initial step of HIV-1 entry into the cells. It has been recently reported that (-)-epigallocatechin gallate (EGCG) from green tea is an inhibitor blocking gp120-CD4 binding. But the inhibitory mechanism remains unknown. For understanding the inhibitory mechanism, extensive molecular docking, molecular dynamics simulations, and binding free-energy calculations have been performed in this study to predict the most favorable structures of CD4-EGCG, gp120-CD4, and gp120-CD4-EGCG binding complexes in water. The results reveal that EGCG binds with CD4 in such a way that the calculated binding affinity of gp120 with the CD4-EGCG complex is negligible. So, the favorable binding of EGCG with CD4 can effectively block gp120-CD4 binding. The calculated CD4-EGCG binding affinity (DeltaG(bind) = -5.5 kcal/mol, K(d) = 94 microM) is in excellent agreement with available experimental data suggesting IC(50) approximately 100 microM for EGCG-blocking CD4-gp120 binding. These results and insights provide a rational basis for future design of novel, more potent inhibitors to block gp120-CD4 binding.  相似文献   

3.
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the “multiple copy simultaneous search” (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen–antibody recognition based on the distributions of MCSS minima of different functional groups.  相似文献   

4.
The HIV-1 envelope gp120, which features both the virus receptor (CD4) and coreceptor (CCR5/CXCR4) binding sites, offers multiple sites for therapeutic intervention. However, the latter becomes exposed, thus vulnerable to inhibition, only transiently when the virus has already bound cellular CD4. To pierce this defense mechanism, we engineered a series of heparan sulfate mimicking tridecapeptides and showed that one of them target the gp120 coreceptor binding site with μM affinity. Covalently linked to a CD4-mimetic that binds to gp120 and renders the coreceptor binding domain available to be targeted, the conjugated tridecapeptide now displays nanomolar affinity for its target. Using solubilized coreceptors captured on top of sensorchip we show that it inhibits gp120 binding to both CCR5 and CXCR4 and in peripheral blood mononuclear cells broadly inhibits HIV-1 replication with an IC(50) of 1 nM.  相似文献   

5.
Ca2+, "a signal of life and death", controls numerous cellular processes through interactions with proteins. An effective approach to understanding the role of Ca2+ is the design of a Ca2+-binding protein with predicted structural and functional properties. To design de novo Ca2+-binding sites in proteins is challenging due to the high coordination numbers and the incorporation of charged ligand residues, in addition to Ca2+-induced conformational change. Here, we demonstrate the successful design of a Ca2+-binding site in the non-Ca2+-binding cell adhesion protein CD2. This designed protein, Ca.CD2, exhibits selectivity for Ca2+ versus other di- and monovalent cations. In addition, La3+ (Kd 5.0 microM) and Tb3+ (Kd 6.6 microM) bind to the designed protein somewhat more tightly than does Ca2+ (Kd 1.4 mM). More interestingly, Ca.CD2 retains the native ability to associate with the natural target molecule. The solution structure reveals that Ca.CD2 binds Ca2+ at the intended site with the designed arrangement, which validates our general strategy for designing de novo Ca2+-binding proteins. The structural information also provides a close view of structural determinants that are necessary for a functional protein to accommodate the metal-binding site. This first success in designing Ca2+-binding proteins with desired structural and functional properties opens a new avenue in unveiling key determinants to Ca2+ binding, the mechanism of Ca2+ signaling, and Ca2+-dependent cell adhesion, while avoiding the complexities of the global conformational changes and cooperativity in natural Ca2+-binding proteins. It also represents a major achievement toward designing functional proteins controlled by Ca2+ binding.  相似文献   

6.
The combination of solid phase peptide synthesis and endo-β-N-acetylglucosaminidase (ENGase) catalysed glycosylation is a powerful convergent synthetic method allowing access to glycopeptides bearing full-length N-glycan structures. Mannose-terminated N-glycan oligosaccharides, produced by either total or semi-synthesis, were converted into oxazoline donor substrates. A peptide from the human cytomegalovirus (CMV) tegument protein pp65 that incorporates a well-characterised T cell epitope, containing N-acetylglucosamine at specific Asn residues, was accessed by solid phase peptide synthesis, and used as an acceptor substrate. High-yielding enzymatic glycosylation afforded glycopeptides bearing defined homogeneous high-mannose N-glycan structures. These high-mannose containing glycopeptides were tested for enhanced targeting to human antigen presenting cells (APCs), putatively mediated via the mannose receptor, and for processing by the APCs for presentation to human CD8+ T cells specific for a 9-mer epitope within the peptide. Binding assays showed increased binding of glycopeptides to APCs compared to the non-glycosylated control. Glycopeptides bearing high-mannose N-glycan structures at a single site outside the T cell epitope were processed and presented by the APCs to allow activation of a T cell clone. However, the addition of a second glycan within the T cell epitope resulted in ablation of T cell activation. We conclude that chemo-enzymatic synthesis of mannosylated glycopeptides enhances uptake by human APCs while preserving the immunogenicity of peptide epitopes within the glycopeptides, provided those epitopes are not themselves glycosylated.  相似文献   

7.
CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry 2006, 45, 10973–10980).  相似文献   

8.
A protocol based on saturation transfer difference (STD) NMR spectra was developed to characterize the binding interactions at an atom level, termed group epitope mapping (GEM). As an example we chose the well-studied system of galactose binding to the 120-kDa lectin Ricinus communis agglutinin I (RCA(120)). As ligands we used methyl beta-D-galactoside and a biantennary decasaccharide. Analysis of the saturation transfer effects of methyl beta-D-galactoside showed that the H2, H3, and H4 protons are saturated to the highest degree, giving evidence of their close proximity to protons of the RCA(120) lectin. The direct interaction of the lectin with this region of the galactose is in excellent agreement with results obtained from the analysis of the binding specificities of many chemically modified galactose derivatives (Bhattacharyya, L.; Brewer, C. F. Eur. J. Biochem. 1988, 176, 207-212). This new NMR technique can identify the binding epitope of even complex ligands very quickly, which is a great improvement over time-consuming chemical modifications. Efficient GEM benefits from a relatively high off rate of the ligand and a large excess of the ligand over the receptor. Even for a ligand like the biantennary decasaccharide with micromolar binding affinity, the binding epitopes could easily be mapped to the terminal beta-D-Gal-(1-4)-beta-D-GlcNAc (beta-D-GlcNAc = N-acetyl-D-glucosamine) residues located at the nonreducing end of the two carbohydrate chains. The binding contribution of the terminal galactose residue is stronger than those of the penultimate GlcNAc residues. We could show that the GlcNAc residues bind "edge-on" with the region from H2 to H4, making contact with the protein. Analysis of STD NMR experiments performed under competitive conditions proved that the two saccharides studied bind at the same receptor site, thereby ruling out unspecific binding.  相似文献   

9.
Paul S  Kalaga RS  Gololobov G  Brenneman D 《Applied biochemistry and biotechnology》2000,83(1-3):71-82; discussion 82-4, 145-53
The autoimmune repertoire is well known from previous studies to be capable of producing catalytic antibodies directed to self-antigens. In the present study, we explored the ability of 26 monoclonal light chains (L chains) from multiple myeloma patients to cleave radiolabeled gp120, a foreign protein. One L chain with this activity was identified. 125I-gp120 and unlabeled gp120 were cleaved at several sites by the L chain, as shown by SDS-polyacrylamide gel electrophoresis, autoradiography, and immunoblotting, respectively. The apparent dissociation constant of the L chain was 130-145 nM, indicating high-affinity gp120 recognition. 125I-albumin was not cleaved by the L chain, and various proteins and peptides did not inhibit gp120 cleavage by the L chain, suggesting that the activity is not a nonspecific phenomenon. The substrate recognition determinants may be conserved in different HIV-1 strains, because gp120 isolated from strains SF2, MN, and IIIB was found to be cleaved by the L chain. Micromolar concentrations of a synthetic peptide corresponding to residues 23-30 of gp120 inhibited the cleavage of 125I-gp120, suggesting that these residues are components of the epitope recognized by the L chain. The toxic effect of gp120 in neuronal cultures was reduced by about 100-fold by pretreatment of the protein with the L chain. These observations open the possibility of utilizing gp120-cleaving antibodies in the treatment of AIDS.  相似文献   

10.
Synthetic gp120331-335 glycopeptide fragments carrying hybrid and high-mannose type N-linked glycans were evaluated for binding to broadly neutralizing antibody 2G12 using surface plasmon resonance technology. None of the hybrid-type constructs demonstrated binding to 2G12. In the high-mannose series, the "Cys dimer" construct, presenting two undecasaccharide glycans, showed significantly higher binding than the Cys-protected monomer. The binding of the dimeric structure was further investigated in competition with recombinant gp120. The data suggest that gp120 and its designed synthetic epitope construct bind to the same site on 2G12.  相似文献   

11.
In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.  相似文献   

12.
[M + Cu]+ peptide ions formed by matrix-assisted laser desorption/ionization from direct desorption off a copper sample stage have sufficient internal energy to undergo metastable ion dissociation in a time-of-flight mass spectrometer. On the basis of fragmentation chemistry of peptides containing an N-terminal arginine, we propose the primary Cu+ ion binding site is the N-terminal arginine with Cu+ binding to the guanidine group of arginine and the N-terminal amine. The principal decay products of [M + Cu]+ peptide ions containing an N-terminal arginine are [a(n) + Cu - H]+ and [b(n) + Cu - H]+ fragments. We show evidence to suggest that [a(n) + Cu - H]+ fragment ions are formed by elimination of CO from [b(n) + Cu - H]+ ions and by direct backbone cleavage. We conclude that Cu+ ionizes the peptide by attaching to the N-terminal arginine residue; however, fragmentation occurs remote from the Cu+ ion attachment site involving metal ion promoted deprotonation to generate a new site of protonation. That is, the fragmentation reactions of [M + Cu]+ ions can be described in terms of a "mobile proton" model. Furthermore, proline residues that are adjacent to the N-terminal arginine do not inhibit formation of [b(n) + Cu - H]+ ion, whereas proline residues that are distant to the charge carrying arginine inhibit formation of [b(n) + Cu - H]+ ions. An unusual fragment ion, [c(n) + Cu + H]+, is also observed for peptides containing lysine, glutamine, or asparagine in close proximity to the Cu+ carrying N-terminal arginine. Mechanisms for formation of this fragment ion are also proposed.  相似文献   

13.
Sulfonated distamycin (Suradista) derivatives exhibit anti-HIV-1 activity by inhibiting the binding of the viral envelope glycoprotein gp120 to its receptor (CD4). With the aim to propose a possible binding mode between Suradistas and the CD4 macromolecule, molecular docking experiments, followed by energy minimization of the complexes thus obtained, were performed. Computational results show that ligand binding at the CD4 surface involves two or three positively charged regions of the macromolecule, in agreement with the results of X-ray crystallographic analysis of a ternary complex (CD4/gp120/neutralizing antibody) recently reported in the literature. Our findings account well for the structure–activity relationship found for Suradista compounds.  相似文献   

14.
During the course of infection, a subset of HIV-1 proteins interacts with multiple cellular partners, sometimes in a hierarchical or sequential way. These proteins include those associated with the initial infection event, with the preparation of the cell for the replicative cycle of the virus and with the exit of new virions from the infected cell. It appears that the interactions of viral proteins with multiple cellular partners are mediated by the occurrence of ligand-induced conformational changes that direct the binding of these proteins to subsequent partners. Two of the most studied HIV-1 proteins that are known to interact with different cellular partners are gp120 and Nef. Here we discuss the interactions of these two proteins with their cellular partners and present new results indicating that the conformational changes undergone by these proteins define a novel allosteric paradigm. In the traditional view, conformational changes are thought to occur between well defined structural conformations of a protein. In gp120 and Nef, those changes involve conformations characterized by the presence of large regions devoid of stable secondary or tertiary structure. Those unstructured regions contain the binding determinants for subsequent partners and only become functionally competent by ligand-induced structuring or un-structuring of those regions. By switching binding epitopes between structured and unstructured conformations the binding affinity can be modulated by several orders of magnitude, thus effectively precluding binding against unwanted partners. A better understanding of these interactions would lead to improved strategies for inhibitor design against these viral targets.  相似文献   

15.
The HIV-1 entry process is an important target for the design of new pharmaceuticals for the multidrug therapy of AIDS. A lot of polyanionic compounds, such as polysulfonated and polysulfated, are reported in the literature for their ability to block early stages of HIV-1 replication. Several studies have been performed to elucidate the mechanism of the anti-HIV-1 activity of sulfated polysaccharides and polyanions in general, including binding to cell surface CD4 and interfering with the gp120-coreceptor interaction. Here, we show molecular modeling investigations on ADS-J1, a polyanionic compound with anti-HIV activity that is able to interfere with gp120-coreceptor interactions. Agreeing with experimental data, computer simulations suggested that the V3 loop of gp120 was the preferential binding site for ADS-J1 onto HIV-1. Moreover, mutations induced by the inhibitor significantly changed the stereoelectronic properties of the gp120 surface, justifying a marked drop in the affinity of ADS-J1 toward an ADS-J1-resistant HIV-1 strain.  相似文献   

16.
The autoimmune repertoire is well known from previous studies to be capable of producing catalytic antibodies directed to self-antigens. In the present study, we explored the ability of 26 monoclonal light chains (Lchains) from multiple myeloma patients to cleave radiolabeled gp 120, a foreign protein. One L chain with this activity was identified. 125I-gp120 and unlabeled gp 120 were cleaved at several sites by the L chain, as shown by SDS-polyacrylamide gel electrophoresis, autoradiography, and immunoblotting, respectively. The apparent dissociation constant of the L chain was 130–145 nM, indicating high-affinity gp 120 recognition. 125I-albumin was not cleaved by the L chain, and various proteins and peptides did not inhibit gp 120 cleavage by the L chain, suggesting that the activity is not a nonspecific phenomenon. The substrate recognition determinants may be conserved in different HIV-1 strains, because gp 120 isolated from strains SF2, MN, and IIIB was found to be cleaved by the L chain. Micromolar concentrations of a synthetic peptide corresponding to residues 23–30 of gp 120 inhibited the cleavage of 125I-gp 120, suggesting that these residues are components of the epitope recognized by the L chain. The toxic effect of gp120 in neuronal cultures was reduced by about 100-fold by pretreatment of the protein with the L chain. These observations open the possibility of utilizing gp120-cleaving antibodies in the treatment of AIDS.  相似文献   

17.
The formation of a complex among gp120, CD4, and CCR5/CXCR4 represents a key step in human immunodeficiency virus (HIV) infection. The use of synthetic peptides reproducing sequences of these surface proteins has increased knowledge about the interactions that determine the penetration of HIV viruses into target cells. The final aim of such investigations is the design of molecules able to inhibit the initial step of infection and the development of high-sensitivity in vitro assays for detection of HIV. In particular, the studies presented herein concern the role of the gp120 V3 loop in the CD4 binding, the importance of the N-terminal sequence of HIV-coreceptor CCR5, the sequences patterned on CXCR4 natural ligand (stromal-derived factor 1 [SDF-1]) as inhibitory peptides, and the importance of substrate secondary structure in determining the enzymatic processing of gp120 precursor (gp160).  相似文献   

18.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, a 20-residue peptide (GSTAPPAHGVTSAPDTRPAP) representing the full length tandem repeat sequence of the human mucin MUC1 and its analogue glycosylated with the (2,6)-sialyl-T antigen on Thr11, were prepared and investigated by NMR and molecular modeling. The peptides contain both the GVTSAP sequence, which is an effective substrate for GalNAc transferases, and the PDTRP fragment, a known epitope recognized by several anti-MUC1 monoclonal antibodies. It has been shown that glycosylation of threonine in the GVTSAP sequence is a prerequisite for subsequent glycosylation of the serine at GVTSAP. Furthermore, carbohydrates serve as additional epitopes for MUC1 antibodies. Investigation of the solution structure of the sialyl-T glycoeicosapeptide in a H(2)O/D(2)O mixture (9:1) under physiological conditions (25 degrees C and pH 6.5) revealed that the attachment of the saccharide side-chain affects the conformational equilibrium of the peptide backbone near the glycosylated Thr11 residue. For the GVTSA region, an extended, rod-like secondary structure was found by restrained molecular dynamics simulation. The APDTR region formed a turn structure which is more flexibly organized. Taken together, the joined sequence GVTSAPDTR represents the largest structural model of MUC1 derived glycopeptides analyzed so far.  相似文献   

19.
Studies on chemical modification of Tulipa gesneriana lectin   总被引:1,自引:0,他引:1  
Modification of lysine, tyrosine, histidine, aspartic acid and glutamic acid residues did not affect the agglutinating activity of the Tulipa gesneriana lectin (TGL). Modification of two arginine residues per subunit in the lectin with either 2,3-butanedione or phenylglyoxal led to an almost complete loss of activity. An inactive lectin modified with 2,3-butanedione recovered a full activity on dialysis against Tris-HCl buffer. The presence of 0.1 M (alpha-1----6) linked mannotriose, a potent inhibitor of the lectin, protected all the arginine residues from modification and the lectin was fully active. Circular dichroism spectroscopy showed that no significant conformational change of TGL occurred following arginine modification. A treatment of the lectin solution with N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide, chemical reagents for tryptophan modification, caused turbidity of the solution, accompanied with complete loss of activity. The fluorescence emission spectrum of the lectin showed a characteristic tryptophan emission with a maximum centered at 336 nm. Upon addition of manno-oligosaccharides a decrease of the fluorescence intensity was observed, indicating that the environment of tryptophan residues altered. These results suggest that arginine and tryptophan residues are importantly involved in the sugar binding of TGL.  相似文献   

20.
Probing the conformational and functional hotspot sites within aqueous native protein complexes is still a challenging task. Herein, a mass spectrometry (MS)-based two-step isotope labeling-lysine reactivity profiling (TILLRP) strategy is developed to quantify the reactivities of lysine residues and probe the molecular details of protein–protein interactions as well as evaluate the conformational interventions by small-molecule active compounds. The hotspot lysine sites that are crucial to the SARS-CoV-2 S1–ACE2 combination could be successfully probed, such as S1 Lys417 and Lys444. Significant alteration of the reactivities of lysine residues at the interaction interface of S1-RBD Lys386–Lys462 was observed during the formation of complexes, which might be utilized as indicators for investigating the S1-ACE2 dynamic recognition and intervention at the molecular level in high throughput.

A mass spectrometry-based two-step isotope labeling-lysine reactivity profiling strategy is developed to probe the molecular details of protein–protein interactions and evaluate the conformational interventions by small-molecule active compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号