首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilayers consisting of negatively charged phospholipid DMPA and myelin basic protein (MBP) were assembled by Langmuir-Blodgett deposition of floating Langmuir monolayers from the air/water interface to solid substrates. Protein/lipid samples were obtained by binding MBP from the aqueous subphase to the phospholipid monolayers before deposition. The vertical organization of these model membranes (i.e., with organization perpendicular to the substrate surface) was investigated in detail by neutron reflectivity measurements, and the internal distribution of water molecules was determined from the change of contrast after in-situ H2O/D2O exchange. The multilayers were well ordered, with repeating lipid bilayers as fundamental structural unit. MBP was inserted in between adjacent lipid headgroups, such as in the natural myelin membrane. Water molecules in the multilayers were present mainly in the lipid headgroup and protein slab. On exposition of the pure lipid multilayers to a dry atmosphere, a reduction of the bilayer spacing was determined, whereas the global lamellar order was not affected. In contrast, drying of the protein/lipid multilayers induced degradation of the laminar order. The data demonstrate that ordered Langmuir-Blodgett multilayers are versatile model systems for studying how competing interactions between lipid, protein, water, and ions affect the global organization of such multilamellar lipid/protein assemblies. Here, the water molecules were found to be a necessary mediator to maintain the laminar order in a multilayer from DMPA and myelin basic protein.  相似文献   

2.
We investigated the detailed structure of a surface-grafted phospholipid monolayer, which was polymerized in situ onto a methacryloyl-silanized solid surface. By the combined study of X-ray reflectivity and atomic force microscopy, the in situ polymerization step of the lipid molecules are sufficiently detailed to reveal the molecular structure of lipid molecules before and after in situ polymerization. From the data of the X-ray reflectivity, we confirmed that the in situ polymerization process produces a flat lipid monolayer structure and that the lipid monolayer is substantially grafted on a silanized surface by chemical bonding. After the polymerization and washing processes, the thickness of the head group was 9 angstroms and the thickness of the tail group was 21 angstroms. The surface morphology of the polymerized phospholipid monolayer obtained by the measurements of atomic force microscopy was consistent with the results of the X-ray reflectivity. The cross-sectional analysis shows that the surface coverage of lipid molecules, which are chemically grafted onto a silanized surface, is approximately 89%.  相似文献   

3.
The magnetic alignment behavior ofbicelles (magnetically alignable phospholipid bilayered membranes) as a function of the q ratio (1,2-dihexanoyl-sn-glycerol phosphatidylcholine/1,2-dimyristoyl-sn-glycerol phosphatidylcholine mole ratio) and temperature was studied by spin-labeled X-band electron paramagnetic resonance (EPR) spectroscopy and solid-state 2H and 31P NMR spectroscopy. Well-aligned bicelle samples were obtained at 45 degrees C for q ratios between 2.5 and 9.5 in both the EPR and NMR spectroscopic studies. The molecular order of the system, S(mol), increased as the q ratio increased and as the temperature decreased. For higher q ratios (> or = 5.5), bicelles maintained magnetic alignment when cooled below the main phase transition temperature (approximately 30 degrees C when in the presence of lanthanide cations), which is the first time, to our knowledge, that bicelles were magnetically aligned in the gel phase. For the 9.5 q ratio sample at 25 degrees C, S(mol) was calculated to be 0.83 (from 2H NMR spectra, utilizing the isotopic label perdeuterated 1,2-dimyristoyl-sn-glycerol phosphatidylcholine) and 0.911 (from EPR spectra utilizing the spin probe 3beta-doxyl-5alpha-cholestane). The molecular ordering of the high q ratio bicelles is comparable to literature values of S(mol) for both multilamellar vesicles and macroscopically aligned phospholipid bilayers on glass plates. The order parameter S(bicelle) revealed that the greatest degree of bicelle alignment was found at higher temperatures and larger q ratios (S(bicelle) = -0.92 for q ratio 8.5 at 50 degrees C).  相似文献   

4.
The influence of crystal surface charge on the thermodynamic and structural behavior of phospholipid monolayers has been investigated. We present how charged nanocrystals in the vicinity of an inherently nonordered lipid membrane provoke strong effects on the molecular arrangement within the monolayer. Apart from the induction of phase shifts and nucleation processes, the molecules were forced to adopt an ordered phase. A very recently developed X-ray scattering method is used for the first time to replace time-consuming specular reflectivity measurements. We conclude on the potential effects of crystal surface charge on cellular membranes.  相似文献   

5.
A number of groups have utilized molecular dynamics (MD) to calculate slow-motional electron paramagnetic resonance (EPR) spectra of spin labels attached to biomolecules. Nearly all such calculations have been based on some variant of the trajectory method introduced by Robinson, Slutsky and Auteri (J. Chem. Phys. 1992,96, 2609-2616). Here we present an alternative approach that is specifically adapted to the diffusion operator-based stochastic Liouville equation (SLE) formalism that is also widely used to calculate slow-motional EPR line shapes. Specifically, the method utilizes MD trajectories to derive diffusion parameters such as the rotational diffusion tensor, diffusion tilt angles, and expansion coefficients of the orienting potential, which are then used as direct inputs to the SLE line shape program. This approach leads to a considerable improvement in computational efficiency over trajectory-based methods, particularly for high frequency, high field EPR. It also provides a basis for deconvoluting the effects of local spin label motion and overall motion of the labeled molecule or domain: once the local motion has been characterized by this approach, the label diffusion parameters may be used in conjunction with line shape analysis at lower EPR frequencies to characterize global motions. The method is validated by comparison of the MD predicted line shapes to experimental high frequency (250 GHz) EPR spectra.  相似文献   

6.
Hydrothermal synthesis of Mn doped anatase (TiO2) nanoparticles using scrolled nanotubes of TiO2 and MnCl2 as the starting materials is described. Incorporation of Mn2+ ions on the substitutional sites was confirmed using X-ray absorption fine structure (FT-XAFS) while the oxidation state Mn(II) and coordination environment were determined using both electron paramagnetic resonance (EPR) and X-ray absorption near edge spectroscopy (XANES). Two different hyperfine couplings of 96 and 86 G were found using high-field (130 GHz) EPR reporting that Mn atoms occupy two distinct sites: one undercoordinated (reconstructed surface) and the other octahedral crystalline geometry (nanoparticle core), respectively. It was found that Mn atoms that occupy surface layers are weakly bound to the anatase lattice and can be easily leached using simple dialysis, while those incorporated in the nanoparticle core are bound more strongly and cannot be removed by dialysis. Light excitation EPR reveals that Mn ions incorporated in the surface layers participate in the charge separation, while those trapped deeply in the nanoparticle core do not show any photoactivity. Doping of the core of nanoparticles with Mn2+ ions, on the other hand, enables synthesis of optically transparent films having superparamagnetic behavior at room temperatures with a saturation magnetic moment of 1.23 microB per Mn atom.  相似文献   

7.
Structural investigations of phospholipid monolayers on aqueous subphases on the submolecular level using X-ray and neutron reflectivity measurements are reviewed. While such investigations have been limited in the past by a relatively restricted accessible momentum transfer range, recent developments in synchrotron technology--almost doubling this range--have considerably improved the capabilities of the technique. Until recently, data interpretation has entirely relied on 'box models' which describe the structures as molecularly homogeneous slabs--one hydrophobic and one hydrophilic. It is shown that box models of phospholipid monolayers are rather inadequate to model data at the high momentum transfer available nowadays in X-ray measurements. As an alternative, a hybrid data inversion strategy is proposed that treats the hydrophobic alkane phase as a homogeneous slab and describes the position of submolecular fragments of the lipid headgroups by means of distribution functions along the interface. Within this approach, composition-space refinement--enabling the coupling of data sets from various X-ray and neutron contrasts--in connection with volumetric constraints enables structural characterization of lipid monolayers in unprecedented detail. Extending a recent characterization of dimyristoylphosphatidic acid (DMPA) monolayers on pure water [Schalke et al., Biochim. Biophys. Acta 1464 (2000) 113-126] it is shown that stoichiometric binding of the divalent cations--DMPA-:Cat2+= 2:1--occurs only at exceedingly low areas per molecule, A lipid. At low surface pressure pi, both cations and anions are incorporated into the headgroup in significant amounts, approximately 0.68 Ba2+ and approximately 0.35 Cl- per PA molecule at pi = 2 mN m(-1). They are continuously squeezed out upon compression, until upon approaching Alipid = 41 A2, the stoichiometric ratio between bound cations and acidic headgroups is observed. The average inclination angle alpha of the headgroups as well as their water content is constant along the whole isotherm. The intrinsic contribution to the distribution width--i.e. the spread that is due to a distribution of the fragments within the headgroup without the action of capillary waves--increases with compression up to pi approximately 30 mN m(-1) and drops sharply thereafter in a regime of the isotherm where Alipid approaches its limiting value. The same general picture is observed for DMPA on subphases with 10 mM Ca2+, although the lower electron density of that cation limits the precision of the results.  相似文献   

8.
Inverse lipid–water phases such as cubic phases can form kinetically stable dispersions by fragmentation in water. Cubic lipid phases can be dispersed by polar lipids favoring lamellar phases or by block copolymers, which can close the bilayer at the surface so that the hydrocarbon chain core is not exposed to water. Monodisperse particles based on glycerol monooleate, with their bilayer curved as the P-, D- or G-minimal surface, have been prepared in this way. Their inner bilayer conformation and outer shape have been examined, mainly by X-ray diffraction and cryo transmission electron microscopy. There is also a different type of cubic lipid bilayer particles with a periodicity in the micrometer range, which have been identified in phospholipid–water dispersions and in cell membrane assemblies. The mechanism behind formation in vivo of such cubic membranes, which also follow the P-, D- and G-surfaces, is discussed. Other lipid–water dispersions with lower symmetry are finally considered; dispersions formed by the inverse hexagonal phase and the dispersed state of a tetragonal bilayer structure formed by lung surfactants.  相似文献   

9.
Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1–2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.  相似文献   

10.
A model biological membrane was formed by fusion of mixed cholesterol and DMPC (dimyristoylphosphatidylcholine) phospholipid vesicles onto a gold-coated quartz support. The gold surface was charged and the influence of the charge at the solid support on the structure and integrity of the phospholipid bilayer was investigated using the specular reflection of neutrons and electrochemical measurements. When the surface charge density is close to zero, the lipid vesicles fuse directly on the surface to form a bilayer with a small number of defects and hence low water content. When the support's surface is negatively charged the film swells and incorporates water due to the field driven poration of the membrane. When the charge density is more negative then -8 microC cm(-2) the bilayer is detached from the metal surface. However, it remains in close proximity to the metal electrode, suspended on a thin cushion of water. The film thicknesses, calculated from neutron reflectivity, have allowed us to determine the tilt angle of the lipid molecules as a function of the support's charge density. The lipid molecules are tilted 55 degrees from the surface normal at zero charge density but become significantly more perpendicular (30 degrees tilt angle) at charge densities more negative than -8 microC cm(-2). The tilt angle measurements are in very good agreement with previous IR studies. This paper describes the highlights of a more in-depth study which is fully described in [1].  相似文献   

11.
In order to obtain detailed insights into the physicochemical mechanism of DNA damage induction, “in situ” measurement of electron paramagnetic resonance (EPR) signal from DNA constituent nucleobases, guanine and adenine, has been performed in a vacuum using monochromatic synchrotron soft X-rays. We found that short-lived unpaired electron species arise only during irradiation to the evaporated thin film on a surface. The EPR spectrum of the short-lived species significantly depends on the photon energy irradiated, and the spin concentration obtained from the EPR spectra shows a similar fine structure to the X-ray photoabsorption spectra (X-ray absorption near edge structure; XANES). For the adenine sample, the spin concentration alters strikingly by water absorption on the sample surface. Trapping of photo- or Auger electrons into a newly generated potential in the nucleobases as the consequence of photoelectric effect is suggested as mechanisms of the induction of the short-lived species.  相似文献   

12.
采用69 ℃饱和水蒸气和H2混合气, 于927 ℃下处理金红石型TiO2, 得到不同氧缺位的光催化剂, 并用X射线衍射(XRD)、比表面(BET)、电子顺磁共振(EPR)、紫外-可见漫反射(DRS)、光电子能谱(XPS)对其进行了表征. 考察了热处理时间对氧缺位型TiO2光催化分解水析氧活性的影响. 结果表明, 适量的氧缺位能显著提高金红石型TiO2光催化分解水的析氧活性, 其最大析氧速率达222 μmol·L-1·h-1.  相似文献   

13.
The alignment of membrane proteins provides pertinent structural and dynamic information. Structural topology data gleaned from such studies can be used to determine the functional mechanisms associated with a wide variety of integral membrane proteins. In this communication, we successfully demonstrate, for the first time, the determination of the structural topology and helical tilt of an antimicrobial peptide magainin 2 using aligned X-band spin-label EPR spectroscopic techniques. This novel comparison unlocks many possibilities utilizing EPR spectroscopy to probe antimicrobial peptide topologies with increased sensitivity and may also give further clues to elucidate their corresponding mechanisms.  相似文献   

14.
We have prepared a chemically anchored monolayer of PEG (poly(ethylene glycol)) and phospholipid mixture (PEG/phospholipid) on a methacryloyl-terminated substrate by in situ photopolymerization. Both monoacryloyl phospholipid (acryloyl-PC, 1-palmitoyl-2-[12-(acryloyloxy)dodecanoyl]-sn-glycero-3-phosphocholine) and monoacryloyl PEG (acryloyl-PEG, 12-(acryloyloxy)dodecanoyl-PEG) were synthesized by modifyingphospholipid and PEGwith 12-(acryloyloxy)-1-dodecanoic acid and 12-(acryloyloxy)-1-dodecanol, respectively. The surface pressure-area (pi-A) isotherm showed that acryloyl-PEG molecules were stable in the phospholipid monolayer and that they could be evenly inserted into a phospholipid monolayer at the air/water interface. By adding 10 mol % acryloyl-PEG into phosholipid vesicles, we could produce a PEG/phosholipid monolayer on methacryloyl-terminated substrates using vesicle fusion for 3 h. Then, this polymerizable PEG/phospholipid monolayer was in situ photopolymerized onto a methacryloyl-terminated substrate with eosin Y/triethanolamine as co-initiators. Optimal vesicle fusion and irradiation condition were determined with respect to the vesicle fusion time and duration of irradiation. As confirmed by atomic force microscopy and X-ray reflectivity studies, the polymerized PEG/phosholipid surface formed a PEG-covered phospholipid monolayer with thicknesses of 3 and 6 nm for the base phospholipid monolayer and the covering PEG layer, respectively. The chemical anchoring efficiency ofpolymerized PEG and phospholipid molecules, which was calculated by the relative carbon ratio of each surface before and after methanol washing using X-ray photoelectron spectroscopy, was 98%. This polymerized PEG/phosholipid monolayer showed good stability in organic solution due to firm chemical anchoring to a solid surface.  相似文献   

15.
X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the structural and dynamic properties of magnetically aligned phospholipid bilayers utilizing a variety of phosphocholine spin labels (PCSL) as a function oftemperature. 1-Palmitoyl-2-[n-(4,4-dimethyloxazolidine-N-oxyl)stearoyl]-sn-glycero-3-phosphocholine (n-PCSL) in which a nitroxide group was attached to the different acyl chain positions of the phospholipid (n = 5, 7, 12, and 14) were used as an EPR spin probe to investigate magnetically aligned phospholipid bilayers from the plateau (near to the headgroup) region to the end of the acyl chain (center of the bilayers). The addition of certain types of paramagnetic lanthanide ions changes the overall magnetic susceptibility anisotropy tensor of the bicelles, such that the bicelles flip with their bilayer normal either parallel or perpendicular to the magnetic field. The present study reveals for the first time that, in the case of the n-PCSL, the bilayer normal is aligned parallel and perpendicular to the magnetic field in the presence of lanthanide ions having positive delta(chi) (e.g., Tm3+) and negative delta(chi) (e.g., Dy3+), respectively. The magnetic alignment of the bilayers and the corresponding segmental molecular order parameter, S(mol), were investigated as a function of the temperature. The S(mol) values decrease in the following order, 5-PCSL > 7-PCSL > 12-PCSL > 14-PCSL, for the magnetically aligned phospholipid bilayers. Also, the variable temperature study indicates that, by increasing the temperature, the order parameters S(mol) decreased for all the n-PCSLs. The results indicate that magnetically aligned phospholipid bilayers represent an excellent model membrane system for X-band EPR studies.  相似文献   

16.
The formation of nanobubbles on hydrophobic self-assembled monolayers has been examined in a binary ethanol/water titration using small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The AFM data demonstrates a localized force effect attributed to nanobubbles on an immersed hydrophobic surface. This evidence is arguably compromised by the possibility that the AFM tip actually nucleates nanobubbles. As a complementary noninvasive technique, SAXS has been used to investigate the interfacial region of the immersed hydrophobic surface. SAXS measurements reveal an electron density depletion layer at the hydrophobic interface, with changing air solubility in the immersing liquid, due to the formation of nanobubbles.  相似文献   

17.
A pulsed electron paramagnetic resonance (EPR) spectroscopic ruler for oligonucleotides was developed using a series of duplex DNAs. The spin-labeling is accomplished during solid-phase synthesis of the oligonucleotides utilizing a palladium-catalyzed cross-coupling reaction between 5-iodo-2'-deoxyuridine and the rigid spin-label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA). 4-Pulse electron double resonance (PELDOR) was then used to measure the intramolecular spin-spin distances via the dipolar coupling, yielding spin-spin distances of 19.2, 23.3, 34.7, 44.8, and 52.5 A. Employing a full-atom force field with explicit water, molecular dynamic (MD) simulations on the same spin-labeled oligonucleotides in their duplex B-form gave spin-spin distances of 19.6, 21.4, 33.0, 43.3, and 52.5 A, respectively, in very good agreement with the measured distances. This shows that the oligonucleotides adopt a B-form duplex structure also in frozen aqueous buffer solution. It also demonstrates that the combined use of site-directed spin-labeling, PELDOR experiments, and MD simulations can yield a microscopic picture about the overall structure of oligonucleotides. The technique is also applicable to more complex systems, like ribozymes or DNA/RNA-protein complexes, which are difficult to access by NMR or X-ray crystallography.  相似文献   

18.
Modifications to water-zirconia nanoparticle interfaces induced by gamma irradiation have been examined using diffuse reflection infrared Fourier transform (DRIFT), Raman scattering, and electron paramagnetic resonance (EPR) techniques. Spectroscopy with in situ heating was used to probe variations in the dissociatively bound chemisorbed water on the zirconia nanoparticles following evaporation of the physisorbed water. DRIFT spectra show that the bridged Zr-OH-Zr species decreases relative to the terminal Zr-OH species upon irradiation. No variation is observed with Raman scattering, indicating that the zirconia morphology is unchanged. EPR measurements suggest the possible formation of the superoxide ion, presumably by modification of the surface OH groups. Trapped electrons and interstitial H atoms are also observed by EPR.  相似文献   

19.
A novel approach for the surface modification of poly(acrylonitrile-co-2-hydroxyethyl methacrylate) (PANCHEMA) membranes by introducing phospholipid moieties is presented, which involved the reaction of the hydroxyl groups on the membrane surface with 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP) followed by the ring-opening reaction of COP with trimethylamine. The chemical changes of phospholipid-modified acrylonitrile-based copolymers (PMANCP) membranes were characterized by Fourier transfer infrared spectroscopy and X-ray photoelectron spectroscopy. The surface properties of PMANCP membranes were evaluated by pure water contact angle, protein adsorption, and platelet adhesion measurements. Pure water contact angles measured by the sessile drop method on PMANCP membranes were obviously lower than those measured on the PANCHEMA membranes and decreased with the increase of the content of phospholipid moieties on the membrane surface. It was found that the bovine serum albumin adsorption and platelet adhesion were suppressed significantly with the introduction of phospholipid moieties on the membranes surface. These results demonstrated that the described process was an efficient way to improve the surface biocompatibility for the acrylonitrile-based copolymer membrane.  相似文献   

20.
Developing the drugs as amphiphilic lipid complexes is a potential approach for improving therapeutic efficacy of the drugs by increasing solubility, reducing drug crystallinity, modifying dissolution behavior (sustained or controlled release), and improving bioavailability. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthranoid derivative, shows several biological effects like antimicrobial, antidiuretic, anti-cancerous, and potent antioxidant but due to poor solubility, the dissolution restrains its valuable importance. To overcome this limitation, the emodin–phospholipid complex was developed and investigated by thermal analysis (differential scanning calorimetry), crystallographic (X-ray diffractography), surface morphology (scanning electron microscopy), spectroscopic methods (FT-IR, 1H-NMR), solubility, and the dissolution (in vitro drug release) study. The phospholipid complex of emodin was found, fluffy and porous with rough surface morphology in the SEM. FT-IR, 1H-NMR, DSC, and X-RPD data confirmed the formation of the complex. The water and n-octanol solubility of emodin was improved from 2.25 to 9.97 and 53.45 to 77.62 μg/ml, respectively, in the prepared complex. The improved dissolution was shown by the phospholipid complex. Based on the results of the study, it can be concluded that the phospholipid complex may be considered as promising drug delivery system for improving the overall absorption and bioavailability of the emodin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号