首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
This work proposes a theoretical model for predicting the apparent equilibrium contact angle of a liquid on an ideal rough surface that is homogeneous and has a negligible body force, line tension, or contact angle hysteresis between solid and liquid. The model is derived from the conservation equations and the free-energy minimization theory for the changes of state of liquid droplets. The work of adhesion is expressed as the contact angles in the wetting process of the liquid droplets. Equilibrium contact angles of liquid droplets for rough surfaces are expressed as functions of the area ratios for the solid, liquid, and surrounding gas and the roughness ratio and wetting ratio of the liquid on the solid for the partially and fully wet states. It is found that the ideal critical angle for accentuating the contact angles by the surface roughness is 48°. The present model is compared with existing experimental data and the classical Wenzel and Cassie-Baxter models and agrees with most of the experimental data for various surfaces and liquids better than does the Wenzel model and accounts for trends that the Wenzel model cannot explain.  相似文献   

2.
Submicrometer-scale periodic structures consisting of parallel grooves were prepared on azobenzene-containing multiarm star polymer films by laser interference. The wetting characteristics on the patterned surfaces were studied by contact angle measurements. Macroscopic distortion of water drops was found on such small-scale surface structures, and the contact angles measured from the direction parallel to the grooves were larger than those measured from the perpendicular direction. A thermodynamic model was developed to calculate the change in the surface free energy as a function of the instantaneous contact angle when the three-phase contact line (TPCL) moves along the two orthogonal directions. It was found that the fluctuations, i.e., energy barriers, on the energy versus contact angle curves are crucial to the analysis of wetting anisotropy and contact angle hysteresis. The calculated advancing and receding contact angles from the energy versus contact angle curves were in good agreement with those measured experimentally. Furthermore, with the groove depth increasing, both the degree of wetting anisotropy and the contact angle hysteresis perpendicular to the grooves increased as a result of the increase in the energy barrier. The theoretical critical value of the groove depth, above which the anisotropic wetting appears, was determined to be 16 nm for the grooved surface with a wavelength of 396 nm. On the other hand, the effect of the groove wavelength on the contact angle hysteresis perpendicular to the grooves was also interpreted on the basis of the thermodynamic model. That is, with the wavelength decreasing, the contact angle hysteresis increased due to the increase in the number of energy barriers. These results may provide theoretical evidence for the design and application of anisotropic wetting surface.  相似文献   

3.
Molecular dynamics simulations were used to study the wetting of nanogrooved PE and PVC polymer surfaces. The contact angles, equilibrium states, and equilibrium shapes of two nanosized water droplets were analyzed on surfaces with 1D-arranged periodic roughness of various dimensions. The composite solid-liquid contact, which is preferred in practical applications and in which a droplet rests on top of the surface asperities, was observed on the roughest PE surfaces, whereas water filled the similar but slightly deeper grooves on PVC surfaces. The transition from the wetted to composite contact regime occurred when the contact angle with a flat surface reached the value at which the apparent Wenzel and Cassie contact angles are equal. Droplets on grooved PE surfaces with the composite contact exhibited contact angles in agreement with Cassie's equation, but the increase in hydrophobicity on smoother surfaces with the wetted contact was less than expected from Wenzel's equation. The difference between the simulated and theoretical values decreased as the dimensions of the surface grooves increased. Only a slight increase or even a slight decrease in the contact angles was observed on the grooved PVC surfaces, owing to the less hydrophobic nature of the flat PVC surface. On both polymers, the nanodroplet assumed a spherical shape in the composite contact. Only minor anisotropy was observed in the wetted contact on PE surfaces, whereas even a highly anisotropic shape was seen on the grooved PVC surfaces. The contact angle in the direction of the grooves was smaller than that in the perpendicular direction, and the difference between the two angles decreased with the increasing size of the water droplet.  相似文献   

4.
The utility of the Cassie-Baxter formula to predict the apparent contact angle of a drop on rough hydrophobic surfaces has been questioned recently. To resolve this issue, experimental and numerical data for advancing and receding contact angles are reported. In all cases considered it is seen that contact angles follow the overall trend of the Cassie-Baxter formula, except for the advancing front on pillar type roughness. It is shown that deviations from the Cassie-Baxter angle have a one-to-one correlation with microscopic distortions of the contact line with respect to its configuration in the Cassie-Baxter state.  相似文献   

5.
The wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The effect of structure geometry, roughness, and relative pore fraction on the contact angles was investigated experimentally for droplets of size comparable to the size of the structures. It was found that surface geometry may induce a transition from groove-filling and Wenzel-like behavior to nonfilling of surface grooves and consequential Cassie-Baxter behavior. Numerical calculations of the free energy of these systems suggest that the equilibrium behavior is in line with the experimental observations. The observations may serve as guidelines for the design of surfaces with the desired wetting behavior.  相似文献   

6.
The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a consequence of both the anisotropy of the contact line movement over the surface and the difference in the motion of the advancing and receding contact lines. Parallel to the grooves, we find little hysteresis due to the surface patterning and that the average contact angle approximately conforms to Wenzel's law as long as the drop radius is much larger than the typical length scale of the grooves. Perpendicular to the grooves, the contact line can be pinned at the edges of the ridges, leading to large contact angle hysteresis.  相似文献   

7.
Wetting on a corrugated surface that is formed via wrinkling of a hard skin layer formed by UV oxidation (UVO) of a poly(dimethylsiloxane) (PDMS) slab is studied using advancing and receding water contact angle measurements. The amplitude of the wrinkled pattern can be tuned through the pre-strain of the PDMS prior to surface oxidation. These valleys and peaks in the surface topography lead to anisotropic wetting by water droplets. As the droplet advances, the fluid is free to move along the direction parallel to the wrinkles, but the droplet moving orthogonal to the wrinkles encounters energy barriers due to the topography and slip-stick behavior is observed. As the wrinkle amplitude increases, anisotropy in the sessile droplet increases between parallel and perpendicular directions. For the drops receding perpendicular to the wrinkles formed at high strains, the contact angle tends to decrease steadily towards zero as the drop volume decreases, which can result in apparent hysteresis in the contact angle of over 100°. The wrinkled surfaces can exhibit high sessile and advancing contact angles (>115°), but the receding angle in these cases is generally vanishing as the drop is removed. This effect results in micrometer sized drops remaining in the grooves for these highly wrinkled surfaces, while the flat analogous UVO-treated PDMS shows complete removal of all macroscopic water drops under similar conditions. These wetting characteristics should be considered if these wrinkled surfaces are to be utilized in or as microfluidic devices.  相似文献   

8.
Contact line and contact angle dynamics in superhydrophobic channels   总被引:1,自引:0,他引:1  
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.  相似文献   

9.
In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.  相似文献   

10.
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.  相似文献   

11.
Considerable effort has been expended on theoretical studies of superhydrophobic surfaces with two-tier (micro and nano) roughness, but experimental studies are few due to the difficulties in fabricating such surfaces in a controllable way. The objective of this work is to experimentally study the wetting and hydrophobicity of water droplets on two-tier rough surfaces for comparison with theoretical analyses. To compare wetting on micropatterned silicon surfaces with wetting on nanoscale roughness surfaces, two model systems are fabricated: carbon nanotube arrays on silicon wafers and carbon nanotube arrays on carbon nanotube films. All surfaces are coated with 20 nm thick fluorocarbon films to obtain low surface energies. The results show that the microstructural characteristics must be optimized to achieve stable superhydrophobicity on microscale rough surfaces. However, the presence of nanoscale roughness allows a much broader range of surface design criteria, decreases the contact angle hysteresis to less than 1 degrees , and establishes stable and robust superhydrophobicity, although nanoscale roughness could not increase the apparent contact angle significantly if the microscale roughness dominates.  相似文献   

12.
The wetting behavior of vapor phase photografted hydrophilic acrylic monomers was evaluated by the three most commonly employed techniques, i.e., the captive bubble, the sessile drop, and the Wilhelmy plate technique. The measured contact angles and the overall wetting behavior were discussed in light of the non-ideal nature of these surfaces.It was found that the peculiar nature of hydrophilic grafted surfaces is carefully reflected in the experimentally measurable contact angles. While in the case of the captive bubble the hydrophilic and rough nature of these coatings prevent the bubble-surface contact, in the case of the sessile drop the measured contact angles follow the behavior predicted by contact angle hysteresis theories. Wilhelmy plate measurements, performed as sequential scanning loops, show velocity-dependent effects which are linked to the composition, morphology and mobility of the grafted surfaces.  相似文献   

13.
Contact angle measurements for three n-alkanes, heptane, octane, and nonane, on two different self-assembled surfaces (SAM) are reported as a function of drop size. These liquids all formed low contact angles (below 20 degrees ); the measurements were performed using an accurate method for systems with low contact angle, ADSA-D. The observed drop size dependence of the contact angles was interpreted using the modified Young equation. It was concluded that the observed drop size dependence of contact angles was due to line tension. The choice of systems also provided the opportunity to examine the behavior of the line tension for systems near wetting (i.e., low contact angles). It was determined that the line tension is positive and ranges from below 10(-7) to just below 10(-6) J/m for the systems studied; the observations suggested that the line tension decreases as the contact angle decreases and likely vanishes at complete wetting.  相似文献   

14.
In this paper, we explore the influence of curved surfaces on contact angles. Small liquid drops were deposited at the apex of spheres. Liquid was added to advance the contact line (or withdrawn to cause recession). As drop volume increased, the contact line advanced outward and downward. With the addition of each increment of liquid, the contact line encountered a steeper slope and showed progressively larger apparent advancing contact angles. Observed apparent contact angles could be explained in terms of intrinsic contact angles and surface orientation. We found that if curvature and geometry were correctly accounted for, the classic Gibbs relation held. The experimental approach and analysis used here for estimating intrinsic wettability from curved surfaces could easily be integrated into automated contact angle measurement systems.  相似文献   

15.
The wetting of rough honeycomb micrometrically scaled polymer substrates was studied. A very strong dependence of the apparent contact angle on the drop volume has been established experimentally. The environmental scanning electron microscopy study of the fine structure of the triple line is reported first. The triple line is not smooth and prefers grasping the polymer matrix over air holes. The precursor rim surrounding the drop has been observed. The revealed dependence of the apparent contact angle on the drop volume is explained by the transition between the pure Cassie and combined Wenzel-Cassie wetting regimes, which is induced by capillarity penetration of water into the holes of relief.  相似文献   

16.
Contact angle measurement on rough surfaces   总被引:6,自引:0,他引:6  
A new method for the measurement of apparent contact angles at the global energy minimum on real surfaces has been developed. The method consists of vibrating the surface, taking top-view pictures of the drop, monitoring the drop roundness, and calculating the contact angle from the drop diameter and weight. The use of the new method has been demonstrated for various rough surfaces, all having the same surface chemistry. In order to establish the optimal vibration conditions, the proper ranges for the system parameters (i.e., drop volume, vibration time, frequency of vibration, and amplitude of vibration) were determined. The reliability of the method has been demonstrated by the fact that the ideal contact angles of all surfaces, as calculated from the Wenzel equation using the measured apparent contact angles, came out to be practically identical. This ideal contact angle has been compared with three methods of calculation from values of advancing and receding contact angles.  相似文献   

17.
In microscopic rectangular grooves various liquid wetting morphologies can be found, depending on the wettability and details of the geometry. When these morphologies are combined with a method to vary the apparent contact angle reversibly, transitions between droplike objects and elongated liquid filaments can be induced. Liquid can thus be transported on demand along the grooves. The dynamics of liquid filaments advancing into grooves as well as receding from grooves has been studied, varying the contact angle using the electrowetting effect. The dynamics of the receding filament is purely capillarity driven and depends only on the contact angle, the viscosity of the liquid, and the geometry of the groove. The length and the dynamics of the advancing filaments, on the other hand, are strongly dependent on the ionic content of the liquid and the applied ac voltage.  相似文献   

18.
The impact dynamics of water drops on sized and unsized smooth cellulose films and paper surfaces with controlled roughness levels were studied. The objective was to better understand the effect of roughness on the liquid drop impact dynamics on paper surfaces, isolating from the effect chemical heterogeneity. Drop impact in the first few milliseconds were recorded using high-speed CCD camera and the three-phase contact line movement of the water drop was analyzed. Smooth cellulose film surface and rough paper surface showed similar impact dynamics, suggesting that the surface energy plays a more dominant role than surface roughness. Significantly different dynamic contact angles of water drop on the sized and unsized surfaces were observed during drop impact. The Laplace pressure of the curved spreading front pointing to the centre of a spreading drop on these sized cellulose and paper surfaces reduces the three-phase contact line movement, and leads to smaller maximum spreading diameter. Our results suggest that the water drop spreads on the rough surface is most likely via a “roll-over” action rather than “stick and jump” movements.  相似文献   

19.
Hydrophilic laser-textured silicon wafers with natural oxide surfaces were rendered hydrophobic by depositing electrostatically charged submicrometer Teflon particles, a process termed as triboelectric Teflon adhesion. Silicon surfaces were micro-textured (~5 μm) by laser ablation using a nanosecond pulsed UV laser. By varying laser fluence, micro-texture morphology of the wafers could be reproduced and well controlled. Wetting properties of the triboelectrically charged Teflon-deposited surfaces were studied by measuring apparent static water contact angles and water contact angle hysteresis as a function of substrate roughness and the amount of Teflon deposited. A similar study was also performed on various micro-textured silicon carbide surfaces (sandpapers). If the average substrate roughness is between 15 and 60 μm, superhydrophobic surfaces can be easily formed by Teflon deposition with water contact angle hysteresis less than 8°. This environmentally benign solvent-free process is a highly efficient, rapid, and inexpensive way to render contact-charged rough surfaces hydrophobic or superhydrophobic.  相似文献   

20.
The sliding behavior of liquid droplets on inclined Langmuir-Blodgett surfaces was investigated. The critical sliding angle defined as the tilt angle of the surface at which the drop slides down as well as the advancing and receding contact angles was measured for five different liquids on five surfaces. In addition, the contact line geometry was analyzed at critical sliding angle. The experimental relationship between the surface tension forces resulting from contact angle hysteresis and the weight of the drop was compared to theoretical predictions. Even though the shape of the drop bases was found as skewed ellipses, a model assuming parallel-sided elongated drops is shown to describe reasonably the experimental values. This result probably indicates the main influence of the capillary forces at the rear and front edges of the drop with respect to that exerted on the lateral sides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号