首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some periodic behaviour exhibited by a modified van der Pol-Duffing electronic oscillator near a degenerate Hopf-pitchfork bifurcation have been studied. Numerical continuation of these periodic orbits leads to the appearance of interesting phenomena. After varying one of the characteristics of the oscillator, oscillation-sliding between two periodic régimes is detected. In the region where oscillation-sliding is present, quasiperiodic oscillations (invariant torus), breakdown of the torus and the corresponding resonant periodic orbits are also found.  相似文献   

2.
In most cases tendency to synchrony in networks of oscillatory units increases with the coupling strength. Using the popular Hindmarsh-Rose neuronal model, we demonstrate that even for identical neurons and simple coupling the dynamics can be more complicated. Our numerical analysis for globally coupled systems and oscillator lattices reveals a new scenario of synchrony breaking with the increase of coupling, resulting in a quasiperiodic, modulated synchronous state.  相似文献   

3.
Many biological neurons (called phasic or adapting neurons) display neural adaptation: their response to a constant input diminishes with time. A simple method of adding adaptive firing thresholds to existing analog (or graded-response) neural models is described. A half-center central pattern generator is modeled using two mutually inhibitory phasic analog neurons. Hopf bifurcation analysis shows that oscillatory solutions will arise if the mutual inhibition is sufficiently strong, and allows us to characterize the stability of the cycles which arise.  相似文献   

4.
In this paper we examine dynamical modes resulting from diffusion-like interaction of two model biochemical cells. Kinetics in each of the cells is given by the ICC model of calcium ions in the cytosol. Constraints for one of the cells are set so that it is excitable. One of the constraints in the other cell - a fraction of activated cell surface receptors-is varied so that the dynamics in the cell is either excitable or oscillatory or a stable focus. The cells are interacting via mass transfer and dynamics of the coupled system are studied as two parameters are varied-the fraction of activated receptors and the coupling strength. We find that (i) the excitator-excitator interaction does not lead to oscillatory patterns, (ii) the oscillator-excitator interaction leads to alternating phase-locked periodic and quasiperiodic regimes, well known from oscillator-oscillator interactions; torus breaking bifurcation generates chaos when the coupling strength is in an intermediate range, (iii) the focus-excitator interaction generates compound oscillations arranged as period adding sequences alternating with chaotic windows; the transition to chaos is accompanied by period doublings and folding of branches of periodic orbits and is associated with a Shilnikov homoclinic orbit. The nature of spontaneous self-organized oscillations in the focus-excitator range is discussed. (c) 1999 American Institute of Physics.  相似文献   

5.
6.
Using a model system of FitzHugh-Nagumo type in the excitable regime, the similarity between synchronization of self-sustained and noise-induced oscillations is studied for the case of more than one main frequency in the spectrum. It is shown that this excitable system undergoes the same frequency lockings as a self-sustained quasiperiodic oscillator. The presence of noise-induced both stable and unstable limit cycles and tori, as well as their tangential bifurcations, are discussed. As the FitzHugh-Nagumo oscillator represents one of the basic neural models, the obtained results are of high importance for neuroscience.  相似文献   

7.
We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.  相似文献   

8.
We consider two neuronal networks coupled by long-range excitatory interactions. Oscillations in the gamma frequency band are generated within each network by local inhibition. When long-range excitation is weak, these oscillations phase lock with a phase shift dependent on the strength of local inhibition. Increasing the strength of long-range excitation induces a transition to chaos via period doubling or quasiperiodic scenarios. In the chaotic regime, oscillatory activity undergoes fast temporal decorrelation. The generality of these dynamical properties is assessed in firing-rate models as well as in large networks of conductance-based neurons.  相似文献   

9.
Some new elements are introduced into a mathematical model of intracellular calcium oscillations, which make it particularly suitable for the study of bifurcation. In addition to generating regular oscillations, such a modified model can be used to reproduce the burst discharges similar to those recorded in experiments and to describe two new types of oscillatory phenomena. By means of a fast/slow dynamical analysis, we explore the bifurcation and transition mechanisms associated with two types of bursters due to changes in the interaction of two slow variables with different timescales.  相似文献   

10.
It is known that a plain cantilevered pipe conveying fluid loses its stability by a Hopf bifurcation, leading to either planar or non-planar flutter for flow velocities beyond the critical flow velocity for Hopf bifurcation. If an external mass is attached to the end of the pipe (an end-mass), the resulting dynamics become much richer, showing 2D and 3D quasiperiodic and chaotic oscillations at high flow velocities. In this paper, a cantilevered pipe, with and without an end-mass, subjected to a small-amplitude periodic base excitation is considered. A set of three-dimensional nonlinear equations is used to analyze the pipe?s response at various flow velocities and with different amplitudes and frequencies of base excitation. The nonlinear equations are discretized using the Galerkin technique and the resulting set of equations is solved using Houbolt?s finite difference method. It is shown that for a plain pipe (with no end-mass), non-planar post-instability oscillations can be reduced to planar periodic oscillations for a range of base excitation frequencies and amplitudes. For a pipe with an end-mass, similarly to a plain pipe, three-dimensional period oscillations can be reduced to planar ones. At flow velocities beyond the critical flow velocity for torus instability, the three-dimensional quasiperiodic oscillations can be reduced to two-dimensional quasiperiodic or periodic oscillations, depending on the frequency of base excitation. In all these cases, a low-amplitude base excitation results in reducing the three-dimensional oscillations of the pipe to purely two-dimensional oscillations, over a range of excitation frequencies. These numerical results are in agreement with the previous experimental work.  相似文献   

11.
The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values. Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks. (c) 2001 American Institute of Physics.  相似文献   

12.
We study the excitation of nonlinear dissipative oscillator under influence of a monochromatic force at the level of a few quanta. With this purpose we consider an optical parametric oscillator combined with phase-modulation in which the oscillatory mode is excited through down-conversion process under a monochromatic laser field. The temporal Rabi oscillations of Fock states as well as the properties of oscillatory mode in phase space are studied with use of the Wigner functions.  相似文献   

13.
14.
A meminductor is a new type of memory device developed from the memristor.We present a mathematical model of a flux-controlled meminductor and its equivalent circuit model for exploring the properties of the meminductor in a nonlinear circuit.We explore the response characteristics of the meminductor under the exciting signals of sinusoidal,square,and triangular waves by using theoretical analysis and experimental tests,and design a meminductor-based oscillator based on the model.Theoretical analysis and experiments show that the meminductor-based oscillator possesses complex bifurcation behaviors and can generate periodic and chaotic oscillations.A special phenomenon called the co-existent oscillation that can generate multiple oscillations(such as chaotic,periodic oscillations as well as stable equilibrium) with the same parameters and different initial conditions occurs.We also design an analog circuit to realize the meminductor-based oscillator,and the circuit experiment results are in accordance with the theory analysis.  相似文献   

15.
Recent studies of a firing rate model for neural competition as observed in binocular rivalry and central pattern generators [R. Curtu, A. Shpiro, N. Rubin, J. Rinzel, Mechanisms for frequency control in neuronal competition models, SIAM J. Appl. Dyn. Syst. 7 (2) (2008) 609-649] showed that the variation of the stimulus strength parameter can lead to rich and interesting dynamics. Several types of behavior were identified such as: fusion, equivalent to a steady state of identical activity levels for both neural units; oscillations due to either an escape or a release mechanism; and a winner-take-all state of bistability. The model consists of two neural populations interacting through reciprocal inhibition, each endowed with a slow negative-feedback process in the form of spike frequency adaptation. In this paper we report the occurrence of another complex oscillatory pattern, the mixed-mode oscillations (MMOs). They exist in the model at the transition between the relaxation oscillator dynamical regime and the winner-take-all regime. The system distinguishes itself from other neuronal models where MMOs were found by the following interesting feature: there is no autocatalysis involved (as in the examples of voltage-gated persistent inward currents and/or intrapopulation recurrent excitation) and therefore the two cells in the network are not intrinsic oscillators; the oscillations are instead a combined result of the mutual inhibition and the adaptation. We prove that the MMOs are due to a singular Hopf bifurcation point situated in close distance to the transition point to the winner-take-all case. We also show that in the vicinity of the singular Hopf other types of bifurcations exist and we construct numerically the corresponding diagrams.  相似文献   

16.
In neural networks, both excitatory and inhibitory cells play important roles in determining the functions of systems. Various dynamical networks have been proposed as artificial neural networks to study the properties of biological systems where the influences of excitatory nodes have been extensively investigated while those of inhibitory nodes have been studied much less. In this paper, we consider a model of oscillatory networks of excitable Boolean maps consisting of both excitatory and inhibitory nodes, focusing on the roles of inhibitory nodes. We find that inhibitory nodes in sparse networks (small average connection degree) play decisive roles in weakening oscillations, and oscillation death occurs after continual weakening of oscillation for sufficiently high inhibitory node density. In the sharp contrast, increasing inhibitory nodes in dense networks may result in the increase of oscillation amplitude and sudden oscillation death at much lower inhibitory node density and the nearly highest excitation activities. Mechanism under these peculiar behaviors of dense networks is explained by the competition of the duplex effects of inhibitory nodes.  相似文献   

17.
In this paper,we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism.Then we study excitement properties of the model under alternating current (AC) stimulation.The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli,such as refractory period and the brain neural excitement response induced by different intensities of nolse and coupling.The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.  相似文献   

18.
We study the emergence of oscillatory self-sustained behavior in a nonequilibrium Nambu system that features an exchange between different kinetical and potential energy forms. To this end, we study the Yamaleev oscillator in a canonical-dissipative framework. The bifurcation diagram of the nonequilibrium Yamaleev oscillator is derived and different bifurcation routes that are leading to limit cycle dynamics and involve pitchfork and Hopf bifurcations are discussed. Finally, an analytical expression for the probability density of the stochastic nonequilibrium oscillator is derived and it is shown that the shape of the density function is consistent with the oscillator properties in the deterministic case.  相似文献   

19.
Coupling delays may cause drastic changes in the dynamics of oscillatory networks. In the present paper we investigate how coupling delays alter synchronization processes in networks of all-to-all coupled pulse oscillators. We derive an analytic criterion for the stability of synchrony and study the synchronization areas in the space of the delay and coupling strength. Specific attention is paid to the scenario of destabilization on the borders of the synchronization area. We show that in bifurcation points the system possesses homoclinic loops, which give rise to complex long- or quasi-periodic solutions. These newly born solutions are characterized by a synchronous group, from which an oscillator periodically escapes, laps one period, and rejoins. We call such a dynamical regime “phase slip patterns”.  相似文献   

20.
We present an overview of mechanisms responsible for simple or complex oscillatory behavior in metabolic and genetic control networks. Besides simple periodic behavior corresponding to the evolution toward a limit cycle we consider complex modes of oscillatory behavior such as complex periodic oscillations of the bursting type and chaos. Multiple attractors are also discussed, e.g., the coexistence between a stable steady state and a stable limit cycle (hard excitation), or the coexistence between two simultaneously stable limit cycles (birhythmicity). We discuss mechanisms responsible for the transition from simple to complex oscillatory behavior by means of a number of models serving as selected examples. The models were originally proposed to account for simple periodic oscillations observed experimentally at the cellular level in a variety of biological systems. In a second stage, these models were modified to allow for complex oscillatory phenomena such as bursting, birhythmicity, or chaos. We consider successively (1) models based on enzyme regulation, proposed for glycolytic oscillations and for the control of successive phases of the cell cycle, respectively; (2) a model for intracellular Ca(2+) oscillations based on transport regulation; (3) a model for oscillations of cyclic AMP based on receptor desensitization in Dictyostelium cells; and (4) a model based on genetic regulation for circadian rhythms in Drosophila. Two main classes of mechanism leading from simple to complex oscillatory behavior are identified, namely (i) the interplay between two endogenous oscillatory mechanisms, which can take multiple forms, overt or more subtle, depending on whether the two oscillators each involve their own regulatory feedback loop or share a common feedback loop while differing by some related process, and (ii) self-modulation of the oscillator through feedback from the system's output on one of the parameters controlling oscillatory behavior. However, the latter mechanism may also be viewed as involving the interplay between two feedback processes, each of which might be capable of producing oscillations. Although our discussion primarily focuses on the case of autonomous oscillatory behavior, we also consider the case of nonautonomous complex oscillations in a model for circadian oscillations subjected to periodic forcing by a light-dark cycle and show that the occurrence of entrainment versus chaos in these conditions markedly depends on the wave form of periodic forcing. (c) 2001 American Institute of Physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号