首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The silver(I) coordination networks [Ag2(mu-O2CCF3)2(mu-NN)2](infinity) exist as a polymer of macrocycles or a double-stranded polymer when NN = 1,2-C6H4[NHC(O)-4-C5H4N]2 or 1,2-C6H4[NHC(O)-3-C5H4N]2, respectively. Crystal engineering of the polymers is achieved through interchain hydrogen bonds.  相似文献   

2.
Reaction between cationic units of carboxylate-bridged diruthenium complexes [Ru(2)(mu-O(2)CR)(4)](+) (R = Me, CMePh(2), CMe(3), CH(2)CH(2)OMe, C(Me)=CHEt, C(6)H(4)-p-OMe, Ph) and tetrabutylammonium perrhenate gives complexes with different arrangements in the solid state. Thus, the compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)) [R = Me (1), CMePh(2) (2), CMe(3) (3), CH(2)CH(2)OMe (4), C(Me)=CHEt (5), C(6)H(4)-p-OMe (6), Ph (7)] have polymeric structures with the diruthenium units linked by perrhenate ligands in the axial positions. The structures of complexes 3.THF and 4 were established by single-crystal X-ray diffraction. The tetrahedral geometry of the ReO(4)(-) anion permits the formation of a chain close to the linearity. In contrast to the polymeric chains observed in complexes 1-7, the reaction of [Ru(2)(mu-O(2)CPh)(4)](+) with NBu(4)ReO(4) also affords the compounds Ru(2)(mu-O(2)CPh)(4)(ReO(4))(H(2)O) (8) and NBu(4)[Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)] (9) depending on the reaction conditions. The structure of 8 consists of cationic and anionic units, [Ru(2)(mu-O(2)CPh)(4)(H(2)O)(2)](+) and [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-), linked by hydrogen bonds, which give a three-dimensional net. The structure of complex 9.0.5H(2)O has an anionic unit similar to that of 8, whose counterion is NBu(4)(+). The Ru-Ru bond distances are slightly longer in [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-) than in the polymeric compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)). The magnetic behavior owes to the existence of zero-field splitting (ZFS) and a weak antiferromagnetic coupling. The experimental data are fitted with a model that considers the ZFS effect using the Hamiltonian (D) = SDS. The weak antiferromagnetic coupling is introduced as a perturbation, using the molecular field approximation.  相似文献   

3.
Four new binuclear Mn(III) complexes with carboxylate bridges have been synthesized: [[Mn(nn)(H(2)O)](2)(mu-ClCH(2)COO)(2)(mu-O)](ClO(4))(2) with nn = bpy (1) or phen (2) and [[Mn(bpy)(H(2)O)](2)(mu-RCOO)(2)(mu-O)](NO(3))(2) with RCOO = ClCH(2)COO (3) or CH(3)COO (4). The characterization by X-ray diffraction (1 and 3) and X-ray absorption spectroscopy (XAS) (1-4) displays the relevance of this spectroscopy to the elucidation of the structural environment of the manganese ions in this kind of compound. Magnetic susceptibility data show an antiferromagnetic coupling for all the compounds: J = -2.89 cm(-1) (for 1), -8.16 cm(-1) (for 2), -0.68 cm(-1) (for 3), and -2.34 cm(-1) (for 4). Compounds 1 and 3 have the same cation complex [[Mn(bpy)(H(2)O)](2)(mu-ClCH(2)COO)(2)(mu-O)](2+), but, while 1 shows an antiferromagnetic coupling, for 3 the magnetic interaction between Mn(III) ions is very weak. The four compounds show catalase activity, and when the reaction stopped, Mn(II) compounds with different nuclearity could be obtained: binuclear [[Mn(phen)(2)](mu-ClCH(2)COO)(2)](ClO(4))(2), trinuclear [Mn(3)(bpy)(2)(mu-ClCH(2)COO)(6)], or mononuclear complexes without carboxylate. Two Mn(II) compounds without carboxylate have been characterized by X-ray diffraction: [Mn(NO(3))(2)(bpy)(2)][Mn(NO(3))(bpy)(2)(H(2)O)]NO(3) (5) and [Mn(bpy)(3)](ClO(4))(2).0.5 C(6)H(4)-1,2-(COOEt)(2).0.5H(2)O (8).  相似文献   

4.
Several iron(III) complexes with N-methylimidazole (N-MeIm) as the ligand have been synthesized by using N-MeIm as the solvent. Under anaerobic conditions, [Fe(N-MeIm)(6)](ClO(4))(3) (1) reacts with stoichiometric amounts of water in N-MeIm to afford the (mu-oxo)diiron(III) complex, [Fe(2)(mu-O)(N-MeIm)(10)](ClO(4))(4) (3). Exposure of a solution of 3 in N-MeIm to stoichiometric and excess CO(2) gives rise to the (mu-oxo)(mu-carboxylato)diiron(III) species [Fe(2)(mu-O)(mu-HCO(2))(N-MeIm)(8)](ClO(4))(3) (4) and the methyl carbonate complex [Fe(2)(mu-O)(mu-CH(3)OCO(2))(N-MeIm)(8)](ClO(4))(3) (5), respectively. Formation of the formato-bridged complex 4 upon fixation of CO(2) by 3 in N-MeIm is unprecedentated. Methyl transfer from N-MeIm to a bicarbonato-bridged (mu-oxo)diiron(III) intermediate appears to give rise to 5. Complex 3 is a good starting material for the synthesis of (mu-oxo)mono(mu-carboxylato)diiron(III) species [Fe(2)(mu-O)(mu-RCO(2))(N-MeIm)(8)](ClO(4))(3) (where R = H (4), CH(3) (6), or C(6)H(5) (7)); addition of the respective carboxylate ligand in stoichiometric amount to a solution of 3 in N-MeIm affords these complexes in high yields. Attempts to add a third bridge to complexes 4, 6, and 7 to form the (mu-oxo)bis(mu-carboxylato)diiron(III) species result in the isolation of the previously known triiron(III) mu-eta(3)-oxo clusters [[Fe(mu-RCO(2))(2)(N-MeIm)](3)O](ClO(4)) (8). The structures of 3, 4, 6, and 7 allow one, for the first time, to inspect the various features of the [Fe(2)(mu-O)(mu-RCO(2))](3+) moiety with no strain from the ligand framework.  相似文献   

5.
Face-capped octahedral [Re(6)Se(8)(CN)(6)](3-/4-) clusters are used in place of octahedral [M(CN)(6)](3-/4-) complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction between [Fe(H(2)O)(6)](3+) and [Re(6)Se(8)(CN)(6)](4-) in aqueous solution yields, upon heating, Fe(4)[Re(6)Se(8)(CN)(6)](3).36H(2)O (4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian blue (Fe(4)[Fe(CN)(6)](3).14H(2)O), with [Re(6)Se(8)(CN)(6)](4-) clusters connected through octahedral Fe(3+) ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu(4)N)(4)[Re(6)Se(8)(CN)(6)] (1) with iodine in methanol produces (Bu(4)N)(3)[Re(6)Se(8)(CN)(6)] (2), which is then metathesized to give the water-soluble salt Na(3)[Re(6)Se(8)(CN)(6)] (3). Reaction of [Co(H(2)O)(6)](2+) or [Ni(H(2)O)(6)](2+) with 3 in aqueous solution affords Co(3)[Re(6)Se(8)(CN)(6)](2).25H(2)O (5) or Ni(3)[Re(6)Se(8)(CN)(6)](2).33H(2)O (6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance. In contrast, reaction of [Ga(H(2)O)(6)](3+) with 3 gives Ga[Re(6)Se(8)(CN)(6)].6H(2)O (7), wherein charge balance dictates a fully occupied cubic framework enclosing much smaller cavities. The expanded Prussian blue analogues 4-7 can be fully dehydrated, and retain their crystallinity with extended heating at 250 degrees C. Consistent with the trend in the frequency of framework vacancies, dinitrogen sorption isotherms show porosity to increase along the series of representative compounds 7, Ga(4)[Re(6)Se(8)(CN)(6)](3).38H(2)O, and 6. Furthermore, all of these phases display a significantly higher sorption capacity and surface area than observed in dehydrated Prussian blue. Despite incorporating paramagnetic [Re(6)Se(8)(CN)(6)](3-) clusters, no evidence for magnetic ordering in compound 6 is apparent at temperatures down to 5 K. Reactions related to those employed in preparing compounds 4-6, but carried out at lower pH, produce the isostructural phases H[cis-M(H(2)O)(2)][Re(6)Se(8)(CN)(6)].2H(2)O (M = Fe (8), Co (9), Ni (10)). The crystal structure of 8 reveals a densely packed three-dimensional framework in which [Re(6)Se(8)(CN)(6)](4-) clusters are interlinked through a combination of protons and Fe(3+) ions.  相似文献   

6.
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.  相似文献   

7.
The electronic structures of D(4h)-M(2)(O(2)CH)(4) and the oxalate-bridged complexes D(2h)-[(HCO(2))(3)M(2)](2)(mu-O(2)CCO(2)) and D(4h)-[(HCO(2))(2)M(2)](4)(mu-O(2)CCO(2))(4) have been investigated by a symmetry analysis of their MM and oxalate-based frontier orbitals, as well as by electronic structure calculations on the model formate complexes (M = Mo and W {d(4)-d(4)}, Tc, Ru {d(6)-d(6)}, and Rh {d(7)-d(7)}). Significant changes in the ordering, interactions, and electronic occupation of the molecular orbitals (MOs) arise through both the progression from d(4) to d(7) metals and the change from second to third row transition metals. For M = Mo and W, the highest-occupied orbitals are delta based, while the lowest-unoccupied orbitals are oxalate pi based; for M = Tc, the highest-occupied orbitals are an energetically tight delta-based set of MOs, while the lowest-unoccupied orbitals are MM-based pi. For both Ru and Rh, the highest-occupied MOs are the MM pi* and delta*, respectively, while the lowest-unoccupied MOs, in both instances, are MM-based sigma. With the exception of M = Ru, all of the complexes are closed shell. From the progression M(2) --> [M(2)](2) --> [M(2)](4), we can envision the nature of bandlike structures for a 2-dimensional square grid of formula [M(2)(mu-O(2)CCO(2))](infinity). Only for Mo and W oxalates should good electronic communication between MM centers generate a band of significant width to lead to metallic conductivity upon oxidation.  相似文献   

8.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

9.
The bitopic ligand p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2) (pz = pyrazolyl ring) that contains two tris(pyrazolyl)methane units connected by a semirigid organic spacer reacts with silver(I) salts to yield [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgX)(2)]( infinity ), where X = CF(3)SO(3)(-) (1), SbF(6)(-) (2), PF(6)(-) (3), BF(4)(-) (4), and NO(3)(-) (5). Crystallization of the first three compounds from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgCF(3)SO(3))(2)]( infinity ) (1a), [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)[(CH(3))(2)CO](2)]( infinity ) (2b), and [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)AgPF(6)]( infinity ) (3a), where the stoichiometry for the latter compound has changed from a metal:ligand ratio of 2:1 to 1:1. The structure of 1a is based on helical argentachains constructed by a kappa(2)-kappa(1) coordination to silver of the tris(pyrazolyl)methane units. These chains are organized into a tubular 3D structure by cylindrical [(CF(3)SO(3))(6)](6)(-) clusters that form weak C-H...O hydrogen bonds with the bitopic ligand. The same kappa(2)-kappa(1) coordination is present in the structure of 2a, but the structure is organized by six different tris(pyrazolyl)methane units from six ligands bonding with six silvers to form a 36-member argentamacrocycle core. The cores are organized in a tubular array by the organic spacers where each pair of macrocycles sandwich six acetone molecules and one SbF(6)(-) counterion. The structure of 3a is based on a kappa(2)-kappa(0) coordination mode of each tris(pyrazolyl)methane unit forming a helical coordination polymer, with two strands organized in a double stranded helical structure by a series of C-H...pi interactions between the central arene rings. Crystallization of 2-4 from acetonitrile yields complexes of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[(AgX)(2)(CH(3)CN)(n)]]( infinity ) where n = 2 for X = SbF(6)(-) (2b), X = PF(6)(-) (3b) and n = 1 for X = BF(4)(-) (4b). All three structures contain argentachains formed by a kappa(2)-kappa(1) coordination mode of the tris(pyrazolyl)methane units linked by the organic spacer and arranged in a 2D sheet structure with the anions sandwiched between the sheets. Crystallization of 5 from acetonitrile yields crystals of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgNO(3))(2)(CH(3)CN)(4)]( infinity ), where the nitrate is bonded to the silver. The argentachains, again formed by kappa(2)-kappa(1) coordination, are arranged in W-shaped sheets that have an overall configuration very different from 2b-4b. Treating [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)]( infinity ) with a saturated aqueous solution of KPF(6) or KO(3)SCF(3) slowly leads to complete exchange of the anion. Crystallization of a sample that contains an approximately equal mixture of SbF(6)(-)/PF(6)(-) from acetonitrile yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[Ag(2)(PF(6))(0.78(1))(SbF(6))(1.22(1))(CH(3)CN)(2)][(CH(3)CN)(0.25) (C(4)H(10)O)(0.25)]]( infinity ), a compound with a sheet structure analogous to 2b-4b. Crystallization of the same mixture from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))[(CH(3))(2)CO](1.5)]( infinity ), where the metal-to-ligand ratio is 1:1 and the [C(pz)(3)] units are kappa(2)-kappa(0) bonded forming a coordination polymer. The supramolecular structures of all species are organized by a combination of C-H...pi, pi-pi, or weak C-H-F(O) hydrogen bonding interactions.  相似文献   

10.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

11.
A complex containing the face-capped octahedral [Re(6)(mu(3)-Se)(8)](2+) cluster core, cis-[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)](SbF(6))(2) (1), is used as a ditopic ligand with an enforced right angle between the two 4,4'-dipyridyl moieties for the coordination of Cd(2+) ion. Two coordination polymers, [[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)](2)[Cd(NO(3))(2)]](SbF(6))(4).21C(4)H(10)O.21CH(2)Cl(2) (2) and [[Re(6)(mu(3)-Se)(8)(PPh(3))(4)(4,4'-dipyridyl)(2)][Cd(NO(3))(3)]](NO(3)).2C(4)H(10)O.CH(2)Cl(2) (3), are obtained. The relative concentration of Cd(2+) determines which species is isolated, and the conversion of the first structure into the second is demonstrated experimentally.  相似文献   

12.
13.
The tetra-n-butylammonium (TBA) salt of [(MeO)TiW(5)O(18)](3-) 1 was reacted with alcohols ROH to give primary, secondary and tertiary alkoxide derivatives [(RO)TiW(5)O(18)](3-) (R = Et 2, (i)Pr 3 and (t)Bu 4), whilst hydrolysis afforded [(mu-O)(TiW(5)O(18))(2)](6-) 5 rather than the hydroxo derivative (R = H). In reactions with (i)PrOH and (t)BuOH, impurity peaks observed at 1015 and 1020 ppm in the (17)O NMR spectra indicate alkoxide degradation and Ti=O bond formation via reactions analogous to those occurring at the surfaces of solid heteropolyacids. Aryloxides [(ArO)TiW(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(5) 6, C(6)H(4)Me-4 7, C(6)H(4)(t)Bu-4 8, C(6)H(4)OH-4 9, C(6)H(4)OH-3 10, C(6)H(3)(OH)(2)-3,5 11 and C(6)H(4)CHO-2 13). TiW(5)O(18) units were linked by reacting 1 with 9 to give [(mu-1,4-OC(6)H(4)O)(TiW(5)O(18))(2)](6-) 12. (17)O and (183)W NMR spectra are reported and X-ray crystal structures were obtained for TBA salts of anions 3-10 and 13, which showed that the titanium is six-coordinate in all cases. Reactions were monitored by (1)H NMR, including a 2D-EXSY study of methoxo exchange, and the slow rates observed are probably associated with the reluctance of titanium in these anions to achieve seven-coordination.  相似文献   

14.
Treatment of M(OiPr)4 (M = Ti, V) and [Zr(OEt)4]4 with excess 1,4-HOC6H4OH in THF afforded [M(OC6H4O)a(OC6H4OH)3.34-1.83a(OiPr)0.66-0.17a(THF)0.2]n (M = Ti, 1-Ti; V, 1-V, 0.91 < or = a < or = 1.82) and [Zr(1,4-OC6H4O)2-x(OEt)2x]n (1-Zr, x = 0.9). The combination of of 1-M (M = Ti, V, Zr) or M(OiPr)4 (M = Ti, V), excess 1,4- or 1,3-HOC6H4OH, and pyridine or 4-phenylpyridine at 100 degrees C for 1 d to 2 weeks afforded various 2-dimensional covalent metal-organic networks: [cis-M(mu 1,4-OC6H4O)2py2] infinity (2-M, M = Ti, Zr), [trans-M(mu 1,4-OC6H4O)2py2.py] infinity (3-M, M = Ti, V), solid solutions [trans-TixV1-x(mu 1,4-OC6H4O)2py2.py] infinity (3-TixV1-x, x approximately 0.4, 0.6, 0.9), [trans-M(mu 1,4-OC6H4O)2(4-Ph-py)2] infinity (4-M, M = Ti, V), [trans-Ti(mu 1,3-OC6H4O)2py2] infinity (5-Ti), and [trans-Ti(mu 1,3-OC6H4O)2(4-Ph-py)2] infinity (6-Ti). Single-crystal X-ray diffraction experiments confirmed the pleated sheet structure of 2-Ti, the flat sheet structure of 3-Ti, and the rippled sheet structures of 4-Ti, 5-Ti, and 6-Ti. Through protolytic quenching studies and by correspondence of powder XRD patterns with known titanium species, the remaining complexes were structurally assigned. With py or 4-Ph-py present, aggregation of titanium centers is disrupted, relegating the building block to the cis- or trans-(ArO)4Tipy2 core. The sheet structure types are determined by the size of the metal and the interpenetration of the layers, which occurs primarily through the pyridine residues and inhibits intercalation chemistry.  相似文献   

15.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

16.
The compounds [Ni(en)(3)](2)[Re(6)Te(8)(CN)(6)].10H(2)O (1), [Ni(NH(3))(4)(en)](2)[Re(6)Te(8)(CN)(6)].2H(2)O (2), [Ni(NH(3))(2)(en)(2)][(Ni(en)(2))(3)(Re(4)Te(4)(CN)(12))(2)].38H(2)O (3), [Co(NH(3))(2)(en)(2)](2)[(Co(en)(2))Re(6)Te(8)(CN)(6)]Cl(2).H(2)O (4),and [(Zn(H(2)O)(en)(2))(Zn(en)(2))Re(6)Te(8)(CN)(6)].3H(2)O (5) (en = ethylenediamine) have been synthesized and characterized. Compounds 1, 4, and 5 have been synthesized by the diffusion of an aqueous (for 1 and 5) or an ammonia (for 4) solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O into a glycerol solution of NiCl(2).6H(2)O (for 1), CoCl(2).6H(2)O (for 4), or ZnCl(2) (for 5). Compounds 2 and 3 have been synthesized by the reaction of an aqueous solution of Cs(4)[Re(6)Te(8)(CN)(6)].2H(2)O (for 2) or K(4)[Re(4)Te(4)(CN)(12)].5H(2)O (for 3) with an ammonia solution of Ni(en)(2)Cl(2). Compounds 1 and 2 are ionic whereas compounds 4 and 5 are one-dimensional polymers. Compound 3, a two-dimensional polymer, possesses hexagonal shaped channels of approximate diameter 10-12 A. Because the framework of compound 3 is robust, it is an attractive host for guest molecules of appropriate size and shape. The potential "guest" volume is about 37% of the unit cell volume.  相似文献   

17.
The first face-capped octahedral clusters with 25 metal-based valence electrons are shown to provide versatile building units capable of engaging in magnetic exchange coupling. Reactions of [Re(5)OsSe(8)Cl(6)](3-) and [Re(4)Os(2)Se(8)Cl(6)](2-) with NaCN in a melt of NaNO(3) or KCF(3)SO(3) afford the 24-electron clusters [Re(5)OsSe(8)(CN)(6)](3-) and [Re(4)Os(2)Se(8)(CN)(6)](2-). The 13C NMR spectrum of a 13C-labeled version of the latter species indicates a 1:2 mixture of cis and trans isomers. Cyclic voltammograms of the clusters in acetonitrile display reversible [Re(5)OsSe(8)(CN)(6)](3-/4-), cis-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-), and trans-[Re(4)Os(2)Se(8)(CN)(6)](2-/3-) couples at E(1/2) = -1.843, -0.760, and -1.031 V vs FeCp(2)(0/+), respectively, in addition to other redox processes. Accordingly, reduction of [Re(5)OsSe(8)(CN)(6)](3-) with sodium amalgam and [Re(4)Os(2)Se(8)(CN)(6)](2-) with cobaltocene produces the 25-electron clusters [Re(5)OsSe(8)(CN)(6)](4-) and [Re(4)Os(2)Se(8)(CN)(6)](3-). EPR spectra of these S = 1/2 species in frozen DMF solutions exhibit isotropic signals with g = 1.46 for the monoosmium cluster and g = 1.74 and 1.09 for the respective cis and trans isomers of the diosmium cluster. In each case, results from DFT calculations show the unpaired spin to delocalize to some extent into the pi* orbitals of the cyanide ligands, suggesting the possibility of magnetic superexchange. Reaction of [Re(5)OsSe(8)(CN)(6)](3-) with [Ni(H(2)O)(6)](2+) in aqueous solution generates the porous Prussian blue analogue Ni(3)[Re(5)OsSe(8)(CN)(6)](2).32H(2)O; however, the tendency of the 25-electron clusters to oxidize in water prohibits their use in reactions of this type. Instead, a series of cyano-bridged assemblies, [Re(6-n)Os(n)Se(8)[CNCu(Me(6)tren)](6)](9+) (n = 0, 1, 2; Me(6)tren = tris(2-(dimethylamino)ethyl)amine), were synthesized to permit comparison of the exchange coupling abilities of clusters with 23-25 electrons. As expected, the results of magnetic susceptibility measurements show no evidence for exchange coupling in the assemblies containing the 23- and 24-electron clusters, but reveal the presence of weak ferromagnetic coupling in [Re(4)Os(2)Se(8)[CNCu(Me(6)tren)](6)](9+). Assuming all cluster-Cu(II) exchange interactions to be equivalent, the data were fit to give an estimated coupling strength of J = 0.4 cm(-1). To our knowledge, the ability of such clusters to participate in magnetic exchange coupling has never previously been demonstrated.  相似文献   

18.
A series of linear coordination polymers, metallacycles of cadmium(II) and mercury(II) of flexible carboxylic acid ligands, RCH{3-CH(3)-,5-CH(3)-,6-(-OCH(2)CO(2)H)C(6)H(2)}(2), (when R = C(6)H(5), (H(2)L(1)); 2-NO(2)C(6)H(4)- (H(2)L(2)) and 3-NO(2)C(6)H(4)- (H(2)L(3))) are synthesized and characterized. [CdL(1) (py)(3)](n)·3nH(2)O (py = pyridine) is a linear coordination polymer, whereas [CdL(2)(py)(CH(3)OH)](2)·CH(3)OH is a dinuclear complex of cadmium with a Cd(2)O(2) type of core. The latter is obtained from reaction of cadmium(II) acetate with H(2)L(2) in methanol followed by reaction with pyridine. A similar reaction of cadmium(II) acetate with H(2)L(2) in dimethylformamide results in the formation of a cadmium metallacycle, namely [CdL(2) (py)(2)(H(2)O)](2)·H(2)O. The H(2)L(3) reacted with cadmium(II) acetate in the presence of pyridine to form a metallacycle [CdL(3)(py)(2)(H(2)O)](2)·3H(2)O. The ligand H(2)L(2) form mercury(II) metallacycle [HgL(2)(4-mepy)(2)](2) in the presence of 4-methylpyridine (4-mepy) and the ligand H(2)L(3) forms metallacycle [HgL(3)(3-mepy)(2)](2)·DMF in the presence of 3-methylpyridine (3-mepy). The potassium salts of H(2)L(1) and H(2)L(2) were found to be coordination polymers and these potassium coordination polymers were structurally characterized.  相似文献   

19.
A set of zero-, one-, two-, and three-dimensional materials have been synthesized by systematically varying the stoichiometry of the two components 2,4,6-Me3-C6H2OLi (ArOLi) and Me2N(CH2)(2)OLi (ROLi) within single aggregates, while using 1,4-dioxane (diox) as a ditopic linker. The homoleptic complex [{(ArOLi)4 x (diox)2} superset3(diox)](infinity) 1 forms a 3D diamondoid extended structure, where Li4O4 cubanes act as tetrahedral nodes. Attempts to rationally alter the dimensionality of the network through the sequential replacement of ArOLi vertices by potentially chelating ROLi units have succeeded. The mixed-anion complexes [{(ROLi)(ArOLi)3 x (diox)(1.5)} superset1/2(C6H14)](infinity) 2 and [(ROLi)4(ArOLi)2 x (diox)](infinity) 4 , adopt 2D hexagonal net and 1D chain structures respectively. Furthermore, the two complexes [{(ROLi)3(ArOLi)3 x (diox)(0.5)}(C6H14)](infinity) 3 and [(ROLi) 5(ArOLi) x (diox)(0.5)](infinity) 5 both form unusual 0D molecular dumbbell structures in the solid state. Incorporation of multiple ROLi units in the mixed-anion complexes not only results in reducing the number of possible sites for polymer extension through chelation, but also changes the aggregation state of the building block from tetrametallic Li4O4 units to hexametallic Li6O6 units.  相似文献   

20.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号