首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用旋涂法在FTO(SnO2∶F)导电玻璃衬底上沉积得到BiVO4多孔薄膜用以光解水,改变前驱体的浓度和旋涂次数以调控薄膜的厚度。研究了电解液成分、膜层厚度及表面改性等因素对刚经历过退火处理的BiVO4薄膜光电化学(PEC)性能的影响。结果表明:通过在电解液中添加适量的空穴吞噬剂Na2SO3,或对表面进行Co-Pi改性均能有效改善BiVO4薄膜的PEC活性。这些措施均能有效抑制固液界面处的载流子复合反应。经Co-Pi改性的BiVO4薄膜在0.6 V(vs SCE)偏压下,0.1 mol·L-1 Na2SO4+0.1 mol·L-1 Na2SO3的电解液中展现出最高的光电流密度(4.3 mA·cm-2)。此外,选用一个代表性BiVO4薄膜作为光阳极制备了一个PEC生物传感器,在检测谷胱甘肽(GSH)上表现出比较高的灵敏度。本研究证实了BiVO4薄膜的PEC性能严重依赖着光俘获效率和载流子输运过程。  相似文献   

2.
采用水热法合成出具有不同V、P物质的量之比的Bi VO_4/Bi PO_4复合物。n_V/n_P分别为:0.1/9.9、0.5/9.5、1/9、3/7、5/5。采用XRD、FE-SEM、EDS、拉曼、可见光光度计、漫反射以及电化学等测试手段对Bi VO_4/Bi PO_4复合物进行表征。在可见光条件下降解亚甲基蓝来评价Bi VO_4/Bi PO_4复合物的光催化活性。结果显示,当n_V/n_P3/7的时候,Bi VO_4/Bi PO_4复合物的光催化活性随着Bi VO_4含量的增加而增加,当n_V/n_P=3/7的时候,复合物具有最佳的光催化性能,反应速率常数k为0.005 1 min-1,是纯Bi PO_4的23.2倍。Bi VO_4/Bi PO_4复合物的光催化机制主要是由于Bi VO_4的加入,提高了电子-空穴的分离率,进而提高了光催化活性。  相似文献   

3.
近年来,太阳能驱动的光电化学水分解作为一种高效、环保、可持续的技术,已经引起了广泛的关注.为了更好地使用光电化学技术将太阳能转化为化学能,至关重要的是提高光电极材料的光吸收和光转化效率.BiVO_4禁带宽度(Eg=2.4–2.5 eV)小,具有很好的可见光响应能力,因此BiVO_4光电极材料引起了广泛关注.但是,当单独BiVO_4作为光电阳极材料时,电子-空穴对分离弱、载流子传输慢,从而使BiVO_4不能很好地在光电化学水分解中发挥作用.为了缓解或解决此类限制性因素,本课题组通过水热法合成了NiFe双氢纳米粒子,并将其负载于BiVO_4电极表面,光电催化分解水实验表明其产氢效率得到大幅度提高.同时制备了Ni(OH)_2/BiVO_4和Fe(OH)2/BiVO_4电极并用于研究NiFe/BiVO_4电极的反应机理.在上文基础上,本文采用电子扫描电镜(SEM)、高分辨投射电镜(HRTEM)、X射线衍射(XRD)、紫外可见漫反射(UV-Vis DRS)等表征手段和线性扫描伏安法(LSV)和电流时间(I-t)等对其光电化学活性进行了测试,研究了NiFe/BiVO_4电极在发生水氧化时的反应机理.SEM结果表明,Ni(OH)_2是以纳米片组成的纳米球负载于多孔BiVO_4表面;而当Fe(OH)2负载于BiVO_4表面时,BiVO_4的纳米尺寸减小;NiFe-LDH纳米粒子负载于BiVO_4表面时,可以明显看见BiVO_4纳米颗粒表面包裹着一层更小的纳米粒子.这证明了Ni(OH)_2,Fe(OH)2和NiFe-LDH纳米粒子均成功负载于BiVO_4表面.这也得到HRTEM结果的确认.UV-Vis DRS结果表明NiFe-LDH纳米粒子能有效拓宽BiVO_4的吸收边,从而增加对可见光的吸收,增加了对光的利用率.LSV测试结果表明,暗反应条件下Ni(OH)_2/BiVO_4比NiFe/BiVO_4和Fe(OH)2/BiVO_4电极的起始电位更低,说明Ni(OH)_2有更好的传输电子性能;而在光照条件下,在同一电位时NiFe/BiVO_4比Ni(OH)_2/BiVO_4和Fe(OH)2/BiVO_4电极的光电流值更高.值得注意的是,此时Ni(OH)_2/BiVO_4比Fe(OH)2/BiVO_4电极的光电流值低,这又说明Fe(OH)2比Ni(OH)_2对光更敏感.因此当NiFe-LDH纳米粒子负载于BiVO_4表面时,不仅提高了BiVO_4光电极的光吸收效率,而且加速了载流子的传输从而抑制了光生电子-空穴的复合,使反应过程中的量子效率得到提高  相似文献   

4.
通过"人工光合成"过程,将太阳能转化成氢能的形式加以存储和利用,是替代传统化石能源的清洁能源的制备有效途径.其中,光电化学分解水是氢能制备的最有潜力的路径之一.n型BiVO_4由于具有丰富的储量、较窄的带隙以及合适的能带位置,被称为光电化学领域的研究热点.然而,未修饰的BiVO_4光阳极性能并不理想,主要原因在于载流子复合严重、导电性差以及表面催化动力学低等性质的制约.科研工作者们针对这些方面已进行了非常多的研究,例如与电子传输层的复合、产氧电催化剂的担载以及异质结的构建等.其中表面动力学和电荷分离的同时提升是更理想的改善BiVO_4光阳极性能的方法.我们在上述研究基础上,采用光化学沉积法在纳米多孔BiVO_4电极表面担载无定形氧化铁层,将电极在1.23 V vs.RHE电位下的光电流提升至2.52 m A/cm2,是初始光电化学性能的3倍.采用间歇光照计时电流(i-t)测试,电化学交流阻抗谱(EIS),X射线光电子能谱(XPS),原位和非原位的X射线精细结构能谱(in-situ and ex-situ XAFS)等表征手段研究了无定形氧化铁层的成分和光电化学反应过程中的价态变化,从而分析出光电化学性能提升的原因.间歇光照i-t测试和EIS测试结果表明,无定形氧化铁沉积在BiVO_4使电荷累积减少,复合率降低.XPS测试结果发现无定形氧化铁层存在少量的二价铁成分.通过原位XAFS测试发现,BiVO_4/Fe Ox电极中Fe原子的价态在光照和施加外加偏压条件下会有价态的升高,而撤去光照和偏压后Fe原子的价态状态与最初非原位的测试结果重合.这样的结果证明了无定型氧化铁层在光电化学反应过程中由于二价铁成分的存在,能够很好的通过价态改变实现空穴的吸附和传输,即吸附空穴,被空穴氧化成三价或四价,同时结合自身电催化活性,促进表面分解水反应的进行.而水的氧化反应结束时,则伴随着二价铁离子的再生成.这种反应机理为开发更高效的电催化剂,匹配光电极使用,有着重大的指导意义.  相似文献   

5.
以自制的BiVO4纳米粉制备膜电极, 采用电化学方法较系统地研究了退火温度和膜厚对BiVO4膜电极的光电化学行为和电子输运与复合的影响. 结果表明: 退火温度和膜厚对BiVO4膜电极的光电特性有显著的影响. 膜厚为6.75 μm时, BiVO4膜电极具有最佳的光电化学特性. 退火温度低于500 °C时, 膜电极的光电活性随着温度的升高而增强, 至500 °C时达到最大值; 此后膜电极内的体相缺陷明显增加, 导致其光电活性逐渐降低. BiVO4膜电极有良好的可见光光电转换效率, 并利用其单色光转换效率曲线计算得到BiVO4的带隙为2.36eV, 采用莫特-肖特基电化学法测得其平带电位为-0.7 V (vs Ag/AgCl). 上述结果为BiVO4光催化体系的优化提供了重要的参考.  相似文献   

6.
在光电化学电池中,电解液担负着传递电子的重要责任,因此选择一个最优的电解液对于电池整体效率的提高非常重要.本文通过对CdS薄膜的光电化学电池在六种不同的电解液体系中光电性能的考察发现,加入少量的KCl多硫电解液体系中可以稳定CdS薄膜,减少电子和空穴的复合几率,增加电子的传递速度,从而提高CdS薄膜光电化学电池的光电转...  相似文献   

7.
光电催化(PEC)氧化法是一种使用半导体电极材料在光和电的共同作用下处理水中有机污染的有效方法.在PEC工艺中,施加偏压不仅可以利用电催化对有机污染物进行降解,而且在偏压作用下,光生电子-空穴对能够得到有效的分离和传输,从而大大提高了机物污染物的去除速率.尽管PEC技术已经取得了许多重要的突破,但是能量转换效率仍然无法满足实际应用.因此,开发具有优异性能,良好稳定性和低成本的光电极材料是一项具有挑战性的研究工作.本文采用两步电沉积法制备了BiPO4纳米棒/还原氧化石墨烯/FTO复合光电极(BiPO4/r GO/FTO).电镜结果表明,电沉积制得的纳米棒状磷酸铋均匀负载在石墨烯纳米片层表面.采用甲基橙为模型体系,考察了复合光电极的光电催化活性.BiPO4/r GO/FTO复合电极的光电催化降解速率是BiPO4/FTO光电极的2.8倍,显示出优良的光电催化活性.实验进一步研究了工作电压和BiPO4沉积时间对甲基橙光电降解性能的影响.最佳的BiPO4沉积时间为45 min,最佳工作电压为1.2 V.捕获实验和ESR实验表明羟基自由基(·OH)和超氧化物自由基(·O2-)是该电极的主要活性物种.BiPO4/r GO/FTO复合电极经过四次循环实验后其降解甲基橙效率保持不变,显示出高稳定性,采用光电流,交流阻抗及其荧光测试对其光催化机理进行推测.结果表明该复合光电极具有高PEC活性的主要原因是:石墨烯的引入加快了BiPO4的电子空穴的分离,拓宽了石墨烯的可见光吸收范围;同时,石墨烯诱导产生的BiPO4混合相也进一步促进了光生电子空穴的分离,提高了光电降解活性.  相似文献   

8.
采用原位氧化技术调整316L不锈钢(SS316L)基体元素Cr和Ni在界面的浓度和分布, 形成了Ni和Cr富集改性界面. 应用计时电位技术, 通过Cr和Ni改性层催化草酸溶液中的苯胺单体在其表面吸附并聚合, 在SS316L表面沉积了附着力良好的聚苯胺(PANI)膜. 与SS316L相比, 表面富Ni-Cr的SS316L在涂覆PANI膜后, 在80 ℃ 0.5 mol/L H2SO4+5 mg/L F-溶液中阳极和阴极的腐蚀电位分别提高470和500 mV, 维钝电流均下降2~3个数量级; 在模拟质子交换膜燃料电池运行环境中, 经36000 s恒电位极化, 其阳极和阴极的腐蚀电流分别下降约1和2个数量级, 腐蚀速度分别约为6~9 和< 5 μA/cm2; 在1.4 MPa压力下, 聚苯胺膜层与Toray 060碳纸间接触电阻下降约250 mΩ·cm2. SS316L表面形成富Ni-Cr改性层并涂覆聚苯胺膜后, 其耐蚀性和导电性均明显优于原始SS316L, 这主要取决于富Ni-Cr改性层的结构、 组成和聚苯胺膜的厚度.  相似文献   

9.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

10.
容量;循环特性;自放电;电解液对LiCr0.1Mn1.9O4电化学性能的影响  相似文献   

11.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

12.
在酸性水溶液中(pH=2.0),采用电化学还原(ER)方法对BiVO4薄膜电极进行预处理,并探讨了其对薄膜电极光电化学氧化水性能的影响.结果表明,这种预处理可显著提高电极的光电化学氧化水的性能,且具有良好的光电化学稳定性.利用扫描电子显微镜、X射线衍射、拉曼光谱、光电子能谱、紫外-可见漫反射光谱、荧光光谱、电化学阻抗谱及Mott-Schottky等方法对ER处理前后的电极进行了表征.结果表明,ER预处理使电极粗糙度增大,表面积增大约1.4倍;电极材料的晶型无明显变化,但V—O对称伸缩振动略有红移;表面Bi,V和O结合能变小,Bi3+部分被还原,Bi/V原子比增大;ER处理导致电极平带电位负移,光生载流子在薄膜电极/溶液界面转移速率加快,表面复合速率降低.这些变化和表面积增加是BiVO4电极光电化学性能提高的主要原因.  相似文献   

13.
Cu、Ag、Au掺杂BiVO_4可见光催化剂的制备及性能研究   总被引:1,自引:0,他引:1  
水热法制备了币族金属(Cu、Ag和Au)掺杂的BiVO4可见光催化剂,借助X-射线衍射(XRD)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱(DRS)和扫描电子显微镜(SEM)对其进行表征.XRD分析显示所有催化剂都呈现单斜结构.XPS结果显示掺杂元素均以其稳定氧化态形式存在与催化剂表面.DRS谱中掺杂样品的吸收边界比纯BiVO4都有不同程度的红移.以甲基橙的可见光催化降解反应为探针,研究了催化剂的可见光催化性能.结果表明,经币族金属掺杂改性的催化剂催化能力比纯BiVO4有所提高.对其掺杂增强催化能力的可能原因进行了分析讨论.  相似文献   

14.
《电化学》2020,(2)
Li_2MnO_3正极材料具有较高的理论容量(459 m Ah·g~(-1)),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注.然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用.在此,作者研究了MgF_2涂层对Li_2MnO_3正极材料的电化学性能.结果表明,MgF_2涂层诱导部分层状Li_2MnO_3向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率.重量比为0.5%、1.0%和2.0%的MgF_2涂层电极的初始库仑效率分别为70.1%、77.5%和84.9%,而原始电极仅为57.7%.充放电曲线表明,1.0wt.%MgF_2涂层改性的Li_2MnO_3具有最高的充放电容量和最佳的循环稳定性. 40个循环后1.0wt.%MgF_2涂层样品的容量保持率为81%,远高于原始样品的容量保持率(53.6%).电化学阻抗谱结果表明MgF_2涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性.  相似文献   

15.
隔膜是双电层电容器和混合型电池-超级电容器等电化学储能器件的重要组成元件.本文采用1 mol?L-1四乙基四氟硼酸铵的丙烯碳酸酯电解液制备了基于活性炭的扣式双电层电容器,并采用1 mol?L-1六氟磷酸锂锂离子电解液制备了(LiNi0.5Co0.2Mn0.3O2+活性炭)/石墨体系的混合型电池-超级电容器.研究了不同类型隔膜的物理化学性能,以及其对双电层电容器和混合型电池-超级电容器的电化学性能的影响.四种隔膜分别是无纺布聚丙烯毡、多孔聚丙烯薄膜、Al2O3涂层的聚丙烯薄膜和纤维素纸隔膜.进行了表面形貌、差示扫描量热、电解液吸液量和表观接触角测试表征.电化学测试表明,采用纤维素隔膜的双电层电容器具有最高的比电容和更优的倍率性能,电容器的自放电性能差别不大.而对于混合型电池-超级电容器,采用聚丙烯薄膜和无纺布聚丙烯毡隔膜器件的比容量比其它器件约高20%,且采用纤维素隔膜的器件自放电率最高.  相似文献   

16.
非均相光催化过程是指多相多尺度体系在光辐射作用下发生的一个复杂的催化过程,被认为最有潜力解决环境污染和能源短缺问题的绿色及可再生的技术之一.在目前已经报道的各种非均相光催化剂中,TiO2纳米材料被证实是应用最广泛、光催化效果最好的催化剂,是当前国际材料、环境和能源等领域的研究前沿和热点,高性能TiO2基光催化材料的设计及改性一直是该领域的难点,其关键问题主要为:如何增强TiO2的表面光催化量子效率、促进光生载流子分离和拓展其可见光响应范围.尽管已经有很多关于TiO2光催化的综述,但大多综述集中在高性能TiO2的制备及各种改性策略研究,而对各种改性策略与光催化分子机理之间的关系阐述较少.为此,本文深入分析了TiO2纳米材料的非均相光催化本质并总结了各种表面改性策略.首先从热力学角度阐明TiO2的热力学能带能够确保其实现各种典型光催化反应(包括光催化降解、CO2还原及光解水),证实其广泛应用的可行性.然后,对TiO2光生载流子的动力学基础进行总结,证实快速的广生载流子复合以及较慢的表面化学反应动力学是限制其光催化活性提高的关键制约性因素.于此同时,对TiO2纳米材料的表面Zeta点位、超亲水性、超强酸光催化剂制备(表面羟基取代)等重要的表面化学性质也进行了详细阐述.从而可以初步得出如下结论:表面改性是设计高性能TiO2光催化材料的重中之重,并将各种改性策略浓缩在6个方面:表面掺杂和敏化,构建表面异质结,负载纳米助催化剂,增加可利用的比表面剂,利用表面氟效应以及暴露高活性晶面等.显然,表面掺杂和敏化可以减小TiO2纳米材料的禁带宽度,从而大幅拓宽其可见光吸收范围及光催化效率.而构建紧密的表面异质结可以创建界面电场,不仅可以促进光生电荷分离效率,而且可以有效提高界面电荷转移效率,最终实现异质结的高光催化效率.负载纳米助催化剂则可以大幅加快表面化学反速率,降低光生载流子的表面复合并增加其利用率,并有可能减少不期望的表面逆反应,从而实现光催化活性提升.增加可利用的比表面剂,可以有效提升光催化剂与吸附质之间的有效接触面积,缩短了载流子的传输距离以及通过多次反射与折射提升光能的利用率,从而全方位地提升TiO2纳米材料的光催化活性.对TiO2纳米材料表面进行氟化,可以增加光生羟基自由基的速率以及浓度,并可以通过调节TiO2表面酸碱性而控制其光催化选择性,从而实现高效高选择性光催化.最后,通过暴露TiO2纳米材料的高活性晶面,也可以促进光生载流子分离、增加吸附性能或羟基自由基生成速率,从而获得高光催化效率.另外,这些表面改性策略的协同效应仍是较有前景的TiO2纳米光催化剂改性技术,值得深入研究.同时,深入的光催化分子机理探索仍然是必须的,其不仅有助于发现影响TiO2纳米材料光催化活性提高的关键性制约因素,而且也可以指导开发新型的TiO2纳米光催化剂改性技术.总而言之,通过总结TiO2纳米材料在光催化、表面化学及表面改性等方面的重要进展,可为设计高效的TiO2基及非TiO2基光催化剂并应用于太阳燃料生产、环境修复、有机合成及相关的领域(如太阳能电池、热催、分离和纯化)等提供新的思路.  相似文献   

17.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

18.
采用共沉淀法制备了3种不同含铁量的氧化铁改性蛭石(Verm-Fex,x=5,10,20),研究了纯蛭石(Verm)和Verm-Fex的表面性质及吸附氟的特性。与样品Verm比较,3种Verm-Fex中Verm的d(002)层间距略有升高;Verm-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和外表面积的增加幅度更明显。4种样品的等电点(IEP)也随含铁量的增加而明显升高;初始p H=5.0时,它们的表面ζ电位分别为-16.4,-6.1,10.5和28.4 m V。4种样品对氟的等温吸附数据用单吸附位Langmuir模型拟合(R2=0.973~0.995)时,Verm的R2最高;双吸附位Langmuir模型可很好地描述3种Verm-Fex样品的等温吸附过程(R2=0.991~0.998);Freundlich模型对4种样品吸附数据的拟合度较差(R2=0.835~0.937),但R2随样品含铁量的增加而略微升高。初始p H=5.0时,Verm和Verm-Fex(x=5,10,20)对氟的最大吸附容量(qmax)分别为3.18,6.76,9.27和12.43 mg·g-1。可见,Verm-Fex(尤其含铁量较高的产物)对表生环境中氟的吸附固定性能明显高于Verm。  相似文献   

19.
通过在碱液中阴极还原铁酸铜(t-CuFe_2O_4)简便地实现了纳米Fe/Cu复合材料的自组装。采用循环伏安(CV)与X射线衍射(XRD)分析了自组装过程中的相变。通过透射电镜(TEM)、选区电子衍射(SAED)以及扫描透射-能谱分析(STEM-EDX)的表征可以发现电结晶得到的铁、铜纳米颗粒分布均匀且接触紧密。当用于铁镍电池负极时,Fe/Cu纳米复合电极展现了较好的放电容量与充电接收能力,并具备优异的高倍率与低温性能。当电流密度高达4 500 m A·g_(Fe)~(-1)或运行温度仅为-40℃时,该电极仍拥有很好的输出容量与电位特性。线性扫描伏安(LSV)分析证明了该电极中原位生成的Cu纳米颗粒催化了活性Fe的阳极溶解动力学性能,因而明显改善了电极的高倍率与低温放电性能。  相似文献   

20.
不同形貌ZnSe的制备及光电化学性能   总被引:1,自引:1,他引:1  
采用水热法制备了ZnSe纳米棒和微球, 用XRD, TGA-DTA和SEM等技术对其进行了表征, 提出了解释ZnSe微球的形成新机理. 研究结果表明, 纳米棒直径为50~100 nm, 棒长约为200~300 nm, ZnSe微球直径为3~10 μm.; 纳米棒在反应温度为240 ℃时具有闪锌矿和纤维锌矿型混晶结构, 微球在反应温度为210 ℃时具有闪锌矿结构; 将ZnSe纳米棒和微球均匀地涂在导电玻璃的导电面上, 于380 ℃煅烧40 min后制成膜电极, 并进行了光电化学研究, 纳米棒膜结构电极最高单色光的光电转换效率(IPCE)可达到9.09%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号