首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f(R,T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubbles parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

2.
We study gravitational baryogenesis in the context of f(R, T) gravity where the gravitational Lagrangian is given by a generic function of the Ricci scalar R and the trace of the stress-energy tensor T. We explore how this type of modified gravity is capable to shed light on the issue of baryon asymmetry in a successful manner. We consider various forms of baryogenesis interaction and discuss the effect of these interaction terms on the baryon to entropy ratio in this setup. We show that baryon asymmetry during the radiation era of the expanding universe can be non-zero in this framework. Then, we calculate the baryon to entropy ratio for some specific f(R, T) models and by using the observational data, we give some constraints on the parameter spaces of these models.  相似文献   

3.
We study gravitational baryogenesis in the context of f(R, T) gravity where the gravitational Lagrangian is given by a generic function of the Ricci scalar R and the trace of the stress-energy tensor T. We explore how this type of modified gravity is capable to shed light on the issue of baryon asymmetry in a successful manner. We consider various forms of baryogenesis interaction and discuss the effect of these interaction terms on the baryon to entropy ratio in this setup. We show that baryon asymmetry during the radiation era of the expanding universe can be non-zero in this framework. Then, we calculate the baryon to entropy ratio for some specific f(R, T) models and by using the observational data, we give some constraints on the parameter spaces of these models.  相似文献   

4.
We study wormhole solutions in the framework of f(R,T) gravity where R is the scalar curvature, and T is the trace of the stress-energy tensor of the matter. We have obtained the shape function of the wormhole by specifying an equation of state for the matter field and imposing the flaring out condition at the throat. We show that in this modified gravity scenario, the matter threading the wormhole may satisfy the energy conditions, so it is the effective stress-energy that is responsible for violation of the null energy condition.  相似文献   

5.
The main purpose of this paper is to investigate the exact solutions of plane symmetric spacetime in the context of f(R,T)gravity[Phys.Rev.D 84(2011)024020],where f(R,T)is an arbitrary function of Ricci scalar R and trace of the energy momentum tensor T.We explore the exact solutions for two different classes of f(R,T)models.The first class f(R,T)=R+2f(T)yields a solution which corresponds to Taub's metric while the second class f(R,T)=f_1(R)+f_2(T)provides two additional solutions which include the well known anti-deSitter spacetime.The energy densities and corresponding functions for f(R,T)models are evaluated in each case.  相似文献   

6.
In this paper, we introduce a new f(R) gravity model, containing both curvature components and scalar fields. Afterwards, specifying a peculiar definition for the curvature functions, we derive the field equations for our new f(R) gravity model.  相似文献   

7.
A dark energy model with EoS parameter is investigated in f(R,T) gravity in Bianchi type-III space-time in the presence of perfect fluid source. To obtain a determinate solution special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B 74:183, 1983) is used. We have also assumed that the scalar expansion is proportional to shear and the EoS parameter is proportional to skewness parameter. It is observed that the EoS parameter, skewness parameters in the model turn out to be functions of cosmic time. Some physical and kinematical properties of the model are also discussed.  相似文献   

8.
The spatially homogeneous and totally anisotropic Bianchi Type-II space-time dark energy model with EoS parameter is considered in the presence of a perfect fluid source in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D, 84:024020, 2011). With the help of special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B, 74:182, 1983) a dark energy cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=λT. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

9.
In a paper [Gen. Relativ. Gravit. 48(2016) 57] Chakrabarti and Banerjee investigated perfect fluid collapse in f(R) gravity model and claimed that such a collapse is possible. In this paper we show that without the assumption of dark energy it is not possible that perfect fluid spherical gravitational collapse will occur. We have solved the field equations by assuming linear equation of state(p = ωμ) in metric f(R) gravity with ω =-1. It is shown that Chakrabarti and Banerjee reached to false conclusion as they derived wrong field equations. We have also discussed formation of apparent horizon and singularity.  相似文献   

10.
In a paper[Gen. Relativ. Gravit. 48 (2016) 57] Chakrabarti and Banerjee investigated perfect fluid collapse in f(R) gravity model and claimed that such a collapse is possible. In this paper we show that without the assumption of dark energy it is not possible that perfect fluid spherical gravitational collapse will occur. We have solved the field equations by assuming linear equation of state (p=ωμ) in metric f(R) gravity with ω=-1. It is shown that Chakrabarti and Banerjee reached to false conclusion as they derived wrong field equations. We have also discussed formation of apparent horizon and singularity.  相似文献   

11.
12.
13.
We investigate the effects of magnetic field on the background spacetime of a spherically symmetric relativistic star. Using the general relativistic Maxwell equations coupled to the Einstein field equations for the gravitational field, it is shown that not only the backreaction of the spacetime modifies the magnetic field of the star, but also the magnetic field of the star molds the spacetime in its vicinity. The part played by the poloidal as well as the toroidal components of the magnetic field on the exterior spacetime are investigated.  相似文献   

14.
The exact solutions of the field equations in respect of Kantowski-Sachs universe filled with perfect fluid in the framework of f(R,T) theory of gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) is derived. A cosmological model with an appropriate choice of the function f(T) is constructed. The physical behavior of the cosmological model is studied. Some important features of astrophysical phenomena, like Hubble’s parameter H(z), luminosity distance (d L ) and distance modulus μ(z) with red-shift are also discussed.  相似文献   

15.
16.
17.
We studied the Bianchi type-V universe filled with dark energy (DE) from a wet dark fluid (WDF) in the framework of f(R,T) gravity (Harko in Phys. Rev. D 84:024020, 2011). A new equation of state for the dark energy (DE) component of the universe has been used. It is modeled on the equation of state p=w(ρ?ρ ?) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for exponential and power-law volumetric expansion. It is observed that the universe can approach to isotropy monotonically even in the presence of wet dark fluid. Also we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with redshift.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号