首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究的是,在众多谱线中选出最佳分析谱线的通用方法,铝元素只是作为一个例子。配制一系列单一元素光谱干扰研究试验溶液,并在所选分析谱线波长处逐一扫描。通过谱线叠加情况识别谱线干扰情况,排除元素干扰、基体干扰、试剂干扰等,最终确定最佳分析谱线为394.40 nm和309.27 nm。此实验方法的精密度(RSD)为0.23%~13.8%,元素检出限分别为0.0023%(394.40 nm)和0.0011%(309.27 nm)。  相似文献   

2.
通过对铍的自吸效应和光谱干扰研究,选取了Be(Ⅱ)313.1nm作为分析线,建立了铝铍合金中测定铍元素含量的电感耦合等离子体原子发射光谱(ICP-AES)法。实验结果表明,谱线Be(Ⅱ)313.0nm的线性范围达到20μg/mL,谱线Be(Ⅱ)3 131nm的线性范围可达30μg/mL,当溶液中铍元素的浓度超过线性范围时,两条谱线的工作曲线发生弯曲,产生明显的自吸效应,样品分析过程中避免使用有自吸效应的谱线,可以大大提高分析结果的准确性;样品中主要杂质元素和基体对铍的谱线不产生光谱干扰。方法中铍的检出限为0.000 4%。铍的质量浓度在1.0~15μg/mL时,工作曲线的线性回归方程为y=265.101 0x+0.45,相关系数R=0.999 645。按实验方法分别对铝铍合金样品和合成的模拟标准样品进行回收率和精密度实验,标准加入回收率在101%~103%,相对标准偏差在0.58%~0.98%。方法能够准确快速地分析铝铍中间合金中铍的含量。  相似文献   

3.
采用电感耦合等离子体原子发射光谱法测定Cu-Ni-Mn钎料中的铝和钽元素含量。实验探讨了Cu-NiMn钎料中基体元素及共存元素对铝、钽元素分析谱线的光谱干扰情况,确定了合适的分析谱线和背景校正方法。铝、钽元素的分析谱线分别为396.152 nm和240.063 nm。根据Cu-Ni-Mn钎料中铝、钽元素含量范围,合成系列标准溶液,建立标准工作曲线,工作曲线的线性范围为0.05%~0.20%,线性相关系数分别为0.999 6和0.998 8,此方法用于测定铝、钽元素的检出限分别为0.001 2%和0.008 4%,相对标准偏差为2.43%~4.55%(n=8)。标准加入回收率为100%~119%。该法可用于测定Cu-Ni-Mn合金中的铝和钽含量。  相似文献   

4.
受钼精矿基体中铜、钼元素的干扰,电感耦合等离子体原子发射光谱法(ICP-OES)无法直接用于磷(213.617nm)的检测。考察了钼和铜谱线对磷(213.617nm)测定的影响,应用ICP-OES多谱拟合(MSF)法消除铜(213.599nm)、钼(213.606nm)的光谱干扰,建立了适合钼精矿中磷的检测方法。对方法的准确度和精密度进行实验,钼精矿中磷的加标回收率为96.2%~103.7%,RSD为2.6%~6.0%。实验证明,多谱拟合(MSF)电感耦合等离子体原子发射光谱法测定钼精矿中磷的方法是一种较为理想的分析方法,适合钼精矿中磷的测量范围为0.0010%~1%。  相似文献   

5.
本文研究了快速测定高温合金中5种非金属元素(As、B、P、Se、Si)的分析方法,以满足高温合金行业对非金属元素检测的需求。利用王水和高氯酸对高温合金进行酸溶解,并系统研究了基体元素和共存元素对分析元素谱线的光谱干扰情况,同时进行了分析谱线的选择。5种非金属元素的检出限在5.5 ~ 11.9 ug/ml,5次数据的相对标准偏差(RSD,n=5)为0.9 % ~ 7 %,各元素的回收率在96 % ~ 102 %之间,该方法适用于高温合金中非金属元素的测定。  相似文献   

6.
建立了ICP–AES法测定镍铜合金中Fe,Mn,Cr,Nb元素的分析方法。进行了基体元素Ni,Cu及共存元素对分析元素的光谱干扰研究,分别选择259.940,257.610,283.563,316.340 nm作为分析谱线,确定内标用量为2.00 mL。测定结果的相对标准偏差为0.48%~4.71%(n=8),加标回收率为95.0%~103.4%。该法满足分析要求。  相似文献   

7.
微波消解-ICP-AES法测定钴基合金中的硼   总被引:1,自引:0,他引:1  
采用微波消解-ICP-AES法测定钴基合金中硼元素。通过试验探讨了钴基高温合金中基体元素,主量元素如铬、钨、钼等对硼元素分析谱线的光谱干扰情况,采用基体匹配法对基体干扰进行校正,确定了合适的分析谱线。方法的线性范围为0~8 mg/L,检出限为0.0003%。测定结果的相对标准偏差为1.88%~6.04%(n=6),回收率为92.0%~104.2%。  相似文献   

8.
采用电感耦合等离子体原子发射光谱法测定某低碳高硫钢中的铋含量。通过实验探讨了钢中基体元素及共存元素对铋元素分析谱线的光谱干扰情况,确定了合适的分析谱线和背景校正方法,铋元素的分析谱线为223.061nm。根据某低碳高硫钢中铋元素含量范围,合成系列标准溶液,建立工作曲线,工作曲线的线性范围为0.01%~0.50%,线性相关系数r=0.9998,方法检出限为0.00279%,测量结果的相对标准偏差小于2.7%,加标回收率为98.2%~101.2%。  相似文献   

9.
受钼精矿基体中铜、钼元素的干扰,ICP-OES法无法直接用于磷(213.617nm)的检测。本文考察了钼和铜谱线对磷(213.617nm)测定的影响,应用ICP-OES 多谱拟合(MSF)法消除铜(213.599nm)、钼(213.606nm)的光谱干扰,建立了适合钼精矿中磷的检测方法。对方法的准确度和精密度进行试验,钼精矿中磷的加标回收率为96.2%~103.7%,RSD为2.60%~6.02%。试验证明,本方法是一种较为理想的分析方法,适合钼精矿中磷的测量范围为0.0010%~1%。  相似文献   

10.
ICP—AES法测定含高钽镍基高温合金中的硼   总被引:1,自引:0,他引:1  
采用ICP-AES法测定含高钽(4%~7%)镍基高温合金中的硼元素.通过试验探讨了镍基高温合金中基体元素,主量元素如铬、钴、钨、钼、钽、铌、铼等对硼元素分析谱线的光谱干扰情况,采用基体匹配法对基体干扰进行校正,确定了合适的分析谱线.方法的线性范围为0~4mg/L,检出限为0.0005%.测定结果的相对标准偏差为0.99%~2.60%(n-8),回收率为94.0%-97.3%.  相似文献   

11.
采用王水、氢氟酸在180℃加热条件下溶解试样,全面分析了硅元素的212.412、221.667、251.611、252.851、288.158 nm五条分析谱线的受干扰情况,最终选择了灵敏度和信噪比较高、受钼基体干扰程度较小的Si 288.158 nm为分析谱线。使用多谱线拟合(MSF)技术建立了Si 288.158 nm的光谱校正模型,通过校正模型对样品检测信号峰进行了校正,消除了基体钼(Mo 288.137 nm)的光谱干扰,建立了电感耦合等离子体发射光谱法(ICP-OES)测定钼铝合金中硅含量的方法。该方法在0.10~5.00 mg/L范围内(对应固体样品中硅的质量分数范围为0.010%~0.50%),硅的工作曲线线性关系良好,相关系数为0.9995;方法检出限和定量限分别为23μg/g和76μg/g;对3个不同含量的钼铝样品中的硅含量进行了测定,测定结果的相对标准偏差(RSD)在0.76%~1.36%之间,加标回收率在98.0%~106%范围,与标准(YS/T 1075.3-2015)中钼蓝分光光度法的测定结果一致。  相似文献   

12.
电感耦合等离子体发射光谱法同时测定玻璃中的硫和磷   总被引:5,自引:0,他引:5  
通过对玻璃试样中硫、磷的分解方法、分析线选择、共存元素光谱干扰和仪器最佳分析条件等方面的研究, 建立了ICP-AES 测定玻璃中硫、磷的方法. 选用紫外区谱线S 181.972 nm、 P 177.434 nm, 避免了基体元素对硫、磷的干扰, 该法能够准确、快速地测定玻璃样品中的硫、磷量, 测定结果的相对标准偏差小于2.9%, 方法的检出限分别为 S 0.07 μg/mL, P 0.08 μg/mL, 已用于玻璃样品的分析.  相似文献   

13.
使用HNO3,HF,HCl O4溶解不锈钢样品,以Ni 231.6 nm,Cr 267.7 nm作为分析谱线,以干扰系数法校正Fe对Ni和Cr的光谱干扰,建立了ICP-AES法测定不锈钢中高含量Ni和Cr的方法。通过测定不同铁基体浓度下Ni和Cr的发射强度,考察铁基体对Ni和Cr的光谱干扰。实验结果表明:铁基体对Ni和Cr均存在光谱干扰,将实验方法用于不锈钢标准样品中Ni和Cr的测定,经光谱干扰校正后,结果与参考值吻合,测定结果的绝对误差在0.35%~0.63%间,相对标准偏差(RSD,n=6)在0.68%~1.1%间。  相似文献   

14.
建立ICP–AES法测定超高强度钢中Al,Mn,Si,Ti 4种杂质元素的分析方法。研究了溶解条件试验及共存元素对4种分析元素的光谱干扰的情况,选择了Al 394.401 nm,Mn 257.610 nm,Si 251.611 nm,Ti 334.941 nm作为分析谱线。在选定的实验条件下,Al,Mn,Si,Ti的含量在0.001%~0.2%的范围内有良好的线性关系,相关系数均大于0.993,Al,Mn,Si,Ti的检出限为0.000 1~0.003 5 mg/L,加标回收率为94%~120%,测定结果的相对标准偏差小于10%(n=8)。该方法准确、快速,可用于超高强度钢中Al,Mn,Si,Ti的含量测定。  相似文献   

15.
端视等离子体原子发射光谱法中内标法校正钠基体干扰   总被引:1,自引:0,他引:1  
汪正  陈天裕  张蓓红  吴显欣 《分析化学》2002,30(10):1222-1225
端视电感耦合等离子体原子发射光谱在分析过程中易电离元素引起的非光谱干扰 ,常常使分析结果产生偏差。就不同浓度Na基体对分析谱线产生的干扰进行了实验和研究 ,并用Y作为内标元素来补偿钠基体的干扰。得出在Robust条件 ,即高功率和低载气流速条件下 ,选择合适的离子线 ,并且离子线的总能量大于 10eV下 ,用内标Y 4 37.4 94nm可以很好的补偿不同Na含量的干扰。  相似文献   

16.
ICP-AES法测定1J22软磁材料中的锰、硅、镍、铜、钒   总被引:1,自引:0,他引:1  
用电感耦合等离子体发射光谱仪(ICP)测定软磁材料1J22中的锰、硅、镍、铜、钒.通过试验选择了适宜的测试条件,针对1J22软磁材料中常见元素对锰、硅、镍、铜、钒谱线的光谱干扰选择了合适的分析谱线,并进行了精密度和准确度试验.选用Mn 257. 610 nm、Si 251. 611 nm、Ni 351. 505 nm、Cu 224. 700 nm、V 292. 402 nm为分析线时.合成溶液的回收率为92. 0%~114. O%,RSD为0. 33%~7. 73%(n=6).本方法适合1J22软磁材料中锰、硅、镍、铜、钒元素的测定.  相似文献   

17.
汪正  陈天裕等 《分析化学》2002,30(10):1222-1225
端视电感耦合等离子体原子发射光谱在分析过程中易电离元素引起的非光谱干扰,常常使分析结果产生偏差,就不同浓度Na基体对分析谱线产生的干扰进行了实验和研究,并用Y作为内标元素来补偿钠基体的干扰。得出在Robust条件,即高功率和低载气流速条件下,选择合适的离子线,并且离子线的总能量大于10eV下,用内标Y437.494nm可以很好的补偿不同Na含量的干扰。  相似文献   

18.
电感耦合等离子体原子发射光谱法测定玻璃中总硫   总被引:1,自引:0,他引:1  
应用电感耦合等离子体原子发射光谱法(ICP-AES)测定了玻璃中总硫量。对测定条件,包括试样的溶解方法,分析谱线的选择,共存元素的光谱干扰及仪器的工作参数等作了系统研究。测定中选择了在紫外区的谱线(S 181.972 nm)作分析线可有效地避免了基体中大量钙的干扰。选取5件标准样品或已知样品按所提出方法各进行5次分析,算得方法的RSD值均小于1.5%,进行11次空白试验,算得方法的检出限(3S)为0.01 mg.L-1。通过对两件标准参考物质(NBS 89和GBW 03117)及一件已知样品的分析,验证了方法的准确度,所得测定结果与证书值或已知值相符。  相似文献   

19.
研究了快速测定高温合金中5种非金属元素(As,B,P,Se,Si)的分析方法,以满足高温合金行业对非金属元素检测的需求。利用王水、氢氟酸和酒石酸对高温合金进行酸溶解,系统研究了基体元素和共存元素对分析元素谱线的光谱干扰情况,同时进行了分析谱线的选择。5种非金属元素的检出限在5.0~12.0μg/mL,5次数据的相对标准偏差(RSD,n=5)为1.1%~4.0%,各元素的加标回收率在96%~102%,方法适用于高温合金中非金属元素的测定。  相似文献   

20.
电感耦合等离子体发射光谱法测定低合金钢中痕量硼   总被引:1,自引:0,他引:1  
研究了用标准加入法、电感耦合等离子体发射光谱法(ICP-AES)测定低合金钢中痕量硼的方法,对试样溶样方法、元素分析谱线、共存元素干扰、背景校正、仪器分析最佳条件等因素进行了研究.试验结果表明,在选定的最佳条件下测定,硼的检出限为0.002 mg·L-1,相对标准偏差小于2%,加标回收率为95.0%~108.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号