共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
中低纬地区经常发生的电离层闪烁,严重影响卫星链路的无线电信号传播过程,导致卫星通信导航信号质量下降,甚至中断.在电离层闪烁发生前的酝酿生成期,通过向电离层闪烁"种子因素"的等离子体泡内释放电子密度增强类化学物质,填充等离子体泡,改变等离子体环境特性,调控电离层动力学过程,能够降低电离层等离子体不稳定性增长率,进而抑制闪烁的发生.本文开展了基于化学物质释放的电离层闪烁抑制理论及方法研究,根据化学物质释放对电离层等离子体环境的影响,定量计算控制因素改变对不稳定性增长率的贡献,建立了基于电子密度增强类化学物质释放的电离层闪烁抑制物理模型,仿真了等离子体泡的填充过程及等离子体不稳定性增长率的演化过程.仿真结果表明该方法具有较好的闪烁抑制效果,为我国中低纬地区卫星信号电离层闪烁抑制研究奠定了理论基础. 相似文献
3.
在电离层释放H2O, CO2, H2和SF6等中性气体能导致释放区域电子损耗, 形成明显的人工电离层洞, 是电离层人工变态的重要而有效的手段之一. 本文在改进电离层化学物质释放三维动力学模型的基础上, 对不同释放量级的H2O 和SF6在不同释放高度下产生的电离层洞形态结构及其时空演化规律进行了系统对比研究, 探讨了释放高度对化学物质释放电离层扰动效果、电离层洞形态及其动力学特性等的影响, 并对其成因进行了分析.
关键词:
化学物质释放
电离层扰动
人工电离层洞
三维动力学模型 相似文献
4.
5.
6.
碱金属或碱土金属在电离层释放后,迅速在太阳辐射作用下发生光电离,产生正离子和电子,形成人工等离子体云团.本文基于三维双成分流体模型,考虑释放区域水平风场的影响,探讨了钡和铯在电离层释放后的时空演化规律,并对钡和铯的电离层扰动效应进行了对比.模拟结果表明,不考虑中性风场时,生成的等离子体云团逐渐沿磁场被拉伸成椭球形结构,同时,膨胀的等离子体云会推开背景氧离子,在释放中心形成氧离子密度空洞,并在两侧产生两个对称的密度尖峰;水平风场的存在会使得生成的离子云逆风侧的密度梯度变陡,释放物质对背景氧离子的扰动也更大;对比钡与铯的释放结果发现,由于铯的扩散系数较小,钡云的膨胀更为迅速,Ba+云团的覆盖区域更广;而由于光电离率较大,释放相同质量下铯的离子产率更高;此外,Cs+的扫雪机效应比Ba+扫雪机更强,氧离子密度空穴和凸起处的扰动也更大. 相似文献
7.
8.
9.
10.
以直径1 μm的脂质体为空化研究对象,从修正的Rayleigh空化方程入手,研究机械系数(MI)对300 kHz和1 MHz超声作用时空化效应的影响。脂质体的药物释放以超声作用前后脂质体中钙黄绿素的荧光强度为量度。模拟结果表明:在微泡振荡过程中,由超声波驱动产生的负向最大泡壁运动速度促使微泡半径从最大快速减小接近于零,微泡积聚到最大能量。对于300 kHz和1 MHz的激励超声,存在一个拐点(MI)值,当MI小于接近0.4时,1 MHz微泡半径变化幅度强于300 kHz;当MI>0.4时,300 kHz微泡半径变化幅度强于1 MHz。这一结果预示在此范围内,300 kHz的药物释放效果好于1 MHz。本研究为超声空化效应研究及超声药物释放应用提供了理论依据。 相似文献
11.
发现和分析了氧碘化学激光中的增益光导效应。碘注入的不均匀等导致增益在该方向的不均匀。采用预混模型和Fabry Perot腔模型,推导了碘不均匀分布情况下的单重态氧的产额和激光束横向分布的解析表达式。计算结果表明,由于增益光导效应,引起激光横向分布的变化,可导致光束在碘注入方向的倾斜,以及输出功率的下降。 相似文献
12.
实现高速沉积对于薄膜微晶硅太阳电池产业化降低成本是一个重要手段.采用超高频等离子体增强化学气相沉积(VHF-PECVD)技术,实现了微晶硅硅薄膜的高速沉积,并通过改变气体总流量改变气体滞留时间,考察了气体滞留时间在化学气相沉积(CVD)过程中对薄膜的生长速率以及光电特性和结构特性的影响.采用沉积速率达到12?/s的高速微晶硅工艺制备微晶硅电池,电池效率达到了5.3%.
关键词:
气体滞留时间
高速沉积
微晶硅
超高频等离子体增强化学气相沉积 相似文献
13.
Beatriz Casta?eda William Ortiz‐Cala Cecilia Gallardo‐Cabrera Norma Sbarbati Nudelman 《Journal of Physical Organic Chemistry》2009,22(9):807-814
An HPLC method was developed to determine the stability of alprazolam (AL) as a pure drug and in monodrug pharmaceutical tablets. The main degradation product of AL tablets was isolated and fully characterized as triazolaminoquinoleine (TAQ). For a quantitative evaluation of the excipient effects in the pharmaceutical formulations, a 2k fractionated factorial design was applied in the preparation of the different samples. The kinetic of degradation of AL in each formulation was followed by UV spectrophotometry. It was found that excipients like CMC and magnesium stearate favour degradation, while the rate of the reaction is decreased when lactose and starch were used as excipients. A mechanism for the interactions of AL with some excipients is postulated that explains the observed results. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Iodine release in potassium iodide solution has been investigated under the irradiations of ultrasound and visible light respectively and simultaneously. We have observed that the amount of iodine liberated under the combined irradiation of ultrasound and visible light is larger than the sum of that under the respective irradiations of ultrasound and visible light, indicating a synergistic effect of ultrasound and visible light irradiations. Based on the investigation of the reaction kinetics of iodine liberated, we have ascribed the synergistic effect to the perfect stirring of the photochemical reactor induced by the applying simultaneous ultrasound. The ideal stirring can result in the homogenization of the primary light effect in the whole reaction medium, which induces the acceleration of the photochemical reaction. On behavior of our knowledge, there are few reports on the investigations of utilizing the combination of ultrasonic energy and light energy to accelerate the reaction yield and rate as well as the kinetics of the reaction. 相似文献
15.
The shock wave used in extracorporeal shock wave lithotripsy (ESWL) induces strong cavitation and generates a large amount of free radicals (FR). In order to evaluate the harmfulness of FR in the ESWL, information on the incidence and persist time of FR caused by shock waves is required. FR markers can estimate the amount of FR generated, but not how long the FRs will survive. The OH* FR generated by the ESWL shock wave reacts with luminol and emits blue light, which is called sonochemical luminescence (SCL) phenomenon. In this study, FR generation and persist time were measured by recording SCL phenomenon with a sensitive photomultiplier tube (PMT) that responds in nanoseconds. As a result of measurement with the PMT, when the electromagnetic shock wave used in clinical practice was irradiated to the luminol solution, the amount of light emitted per unit time reached its maximum value within a very short time (< ∼600us) and then exponentially decreased for a long time (∼several hundred ms). The measured FR persist time reaches a maximum of 1000 ms. As the output setting of the shock wave generator increases, the minimum or average FR persist time increases, but the maximum value does not show a high correlation with the output setting. The amount of generated FR shows a very high correlation with the shock wave setting, and when the setting is changed from low to high, it increases very sensitively, rapidly and non-linearly. In order to reduce the risk of FR in patient treatment using lithotripsy, the output setting of the shock wave should be minimized, and the interval between the shock wave pulses should be sufficiently larger than the FR persist time. Therefore, it is recommended to avoid increasing the output setting and setting the shock wave irradiation frequency below 1 Hz to shorten the treatment time in clinical practice. For the purpose of formulating these recommendations, additional studies on the generation and persist time of FR depending on the shock wave generation method and set conditions in living tissue or similar environment are required in the future. 相似文献
16.
17.
S. Cin D. D. Arnone H. P. Hughes D. Whittaker M. Pepper D. A. Ritchie 《Physica E: Low-dimensional Systems and Nanostructures》2000,6(1-4)
We show that the presence of InAs dots embedded in a host GaAs quantum well containing a two-dimensional electron gas dramatically modifies the cyclotron resonance (CR). Far-infrared CR measurements show two modes with different dispersions with applied magnetic field B. The lower-frequency mode, with a sub-linear dependence on B, is identified as a CR at low B, developing into a skipping orbit around the dot perimeters at higher B. This has not been previously observed for a system with randomly distributed scatterers. The higher-frequency mode is identified as a magnetoplasmon localised by the confining effect of the arrays of repulsive potentials due to the dots in the well. 相似文献