首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
采用一种简便的无模板溶剂热法合成了尺寸在1μm左右、具有堆叠结构的SnO_2/TiO_2空心微球。合成过程的研究结果表明:SnO_2/TiO_2空心微球在形成过程中经历了空心、被填充、分裂到再次形成空心结构的过程。随后,SnO_2/TiO_2空心微球作为锂离子电池负极材料的电化学性能测试结果表明:SnO_2/TiO_2空心微球在0.1 A·g~(-1)的电流密度下,其首次放电容量达到1 484.9mAh·g~(-1),库伦效率为49.0%。经过600次循环后,其放电容量依然可以达到565.6 mAh·g~(-1),显示了高的容量和循环稳定性。  相似文献   

2.
采用缓冲溶液法制备Mn掺杂Ni_(1-x)Mn_x(OH)_2(x=0.1,0.2,0.3,0.4)。X射线衍射(XRD)测试表明x=0.1和0.2的样品主要是由β相组成;扫描电子显微镜(SEM)和氮气吸附-脱附测试表明掺杂Mn样品比不掺Mn的商用β-Ni(OH)2的颗粒更细小、多孔;恒流充放电测试表明,这种电极具有优良的高倍率性能,当x=0.2,电流密度800 mA·g-1时放电比容量为288.8 mAh·g-1,同等条件测试的商用β-Ni(OH)2放电比容量为198.7 mAh·g-1,循环580圈后仍有276 mAh·g-1的放电比容量,其衰减率为4.1%,而同等测试条件下的其它4种样品衰减率分别为46.1%(商用β-Ni(OH)2)、13.0%(x=0.1)、25.6%(x=0.3)、34.1%(x=0.4),可见这种Mn掺杂电极材料适合大电流密度充放电,能够改善镍电极的循环稳定性,降低镍电极成本。  相似文献   

3.
为克服Co_3O_4负极材料导电率低、循环稳定性差的缺点,选择Co_2(NDC)_2DMF_2(NDC=1,4-萘二甲酸根)为前驱体采用两步煅烧工艺,制备了具有高碳含量的Co_3O_4/C复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和拉曼光谱对样品进行了表征。采用热重分析法(TGA)测定了Co_3O_4/C中非晶态碳的含量。作为锂离子电池的负极材料,Co_3O_4/C具有高的可逆比容量、优异的循环性能(在200 m A·g~(-1)的电流密度下,循环200圈后放电比容量稳定保持在1 000 mAh·g~(-1))和良好的倍率性能(在100、200、500、1 000和2 000 mA·g~(-1)的电流密度下,放电比容量为分别1 076.3、976.2、872.9、783.6和670.1 mAh·g~(-1))。材料优异的电化学性能归结为有机配体衍生的高含量非晶态碳的导电和缓冲作用有利于电子的快速传递并有效减缓了金属氧化物充放电过程中的体积膨胀。  相似文献   

4.
张欢  其鲁  高学平  杨坤  张鼎 《无机化学学报》2010,26(9):1539-1543
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。  相似文献   

5.
采用静电纺丝的方法获得含有机物的纳米纤维CoCl_2/SnCl_4/PVP,通过高温退火去除有机物PVP,氧化SnCl_4和CoCl_2得到孔隙率高、具有单轴中空结构的Co_3O_4/SnO_2一维纳米材料。该复合材料在电流密度为100 mA·g~(-1)进行40次循环测试,首次放电容量与充电容量分别为1937 mAh·g~(-1)和1515 mAh·g~(-1),其容量远高于商业石墨的容量。通过不同电流密度下的倍率性能测试,表明该材料拥有快速充电的功能。  相似文献   

6.
采用水热法制备了Na_3V_2(PO_4)_2O_2F (NVPOF)钠离子电池正极材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电(GCD)等方法研究了其形貌、结构与电化学性能。结果显示,纯相NVPOF形貌规则,呈长1~3μm、宽300 nm~1μm、长宽比为2~3的四棱柱形貌。NVPOF具有2对平稳的充放电平台,在0.2C和2C电流密度下,放电比容量达到124.2和70.5 m Ah·g~(-1),经100次循环后,放电比容量仍有105.8和59.6 m Ah·g~(-1),容量保持率达到85.2%和84.5%,库仑效率基本在97%以上,且低温(0℃)电化学性能也有不错的表现。经还原氧化石墨烯(r GO)包覆提高电子电导率,NVPOF@r GO在0.5C和2C的室温放电比容量高达124.4和88.4 m Ah·g~(-1),且2C倍率下循环200圈后的比容量仍有78.7 m Ah·g~(-1),容量保持率高达89%,库仑效率始终保持在99%左右,显示出优异的倍率和循环性能。  相似文献   

7.
采用简单的水热合成法制备氟磷酸钒氧钠(Na_3V_2(PO_4)_2O_2F,简写为NVPOF),通过调节水热反应溶液的pH值和反应温度等关键参数,有效调节NVPOF的颗粒尺寸和均匀性,优化其电化学性能。研究结果显示,性能最优的NVPOF的合成条件是:pH值为7.00±0.05,水热反应温度为170℃。在该条件下合成的NVPOF正极材料具有优异的电化学性能,表现为0.1C(1C=130 mA·g~(-1))的倍率下放电比容量可达123.2 mAh·g~(-1),且在20C的高倍率下仍可实现85.9 mAh·g~(-1)的比容量,在1C下循环200圈后其容量保持率为96.2%,表明该材料具有高容量、优异的倍率和循环性能。所制备的NVPOF颗粒为纳米尺度且具有很高的均匀性,可缩短Na~+的传输路径从而缩短其传输时间,且NVPOF晶体结构具有高稳定性,是一类具有高性能的钠离子电池正极材料。  相似文献   

8.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

9.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

10.
以三甘醇为还原剂,Li2CO3和三价铁源FePO4为原料,通过多元醇还原法在低于300℃下直接制备了结晶良好的纯相LiFePO4,无须后续热处理。0.1C首次放电比容量为140.5mAh·g-1。为了进一步改善纯相LiFePO4的电导率,以聚乙烯醇为碳源,在700℃下热处理进行了碳包覆改性,获得了LiFePO4/C复合正极材料。合成的LiFePO4/C在0.1C下放电容量为155mAh·g-1,5C倍率下放电比容量保持在125mAh·g-1,具有很好的倍率性能和循环稳定性。  相似文献   

11.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

12.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

13.
以气相法白炭黑(FS)为Si前驱体,通过镁热还原工艺和对获得的NPs-Si进行SiOx和C复合包覆,制备出NPs-Si@SiOx@C纳米复合结构,将其用作锂电池负极进行电化学性能测试。研究结果表明:镁热还原过程分两步进行,即SiO_2与Mg先生成Mg2Si中间相,Mg2Si继续与SiO_2反应生成Si的反应路径;根据此规律镁热还原气相法白炭黑的Si转化率达87.9%。电化学性能测试中NPs-Si@SiOx@C负极在2.0 A·g-1的电流密度下有1 300 mAh·g-1的容量平台,1 000次循环后的放电比容量为964.2mAh·g-1,容量保持率达75%。  相似文献   

14.
以石墨烯复合粉末为添加剂,采用一步水热法制备了一种SnS2/GCP微米复合材料。在所得到的复合材料中,SnS2纳米片相互缠绕组成多孔球状SnS2颗粒,石墨烯复合粉末均匀的包裹在球状SnS2颗粒表面。将所制备的SnS2/GCP微米复合材料用作锂离子电池负极材料测其电化学性能。结果显示,在0.1 A·g-1的电流密度下可逆比容量为795.6 mAh·g-1,循环100次后比容量损失不到1%。相比于SnS2其比容量和循环稳定性得到了明显改善,主要是由于石墨烯复合粉末的加入,不仅缓解了SnS2颗粒在充放电过程中的团聚和体积膨胀,而且还提高了SnS2颗粒的电导率。  相似文献   

15.
以碳布(CC)作为柔性基底,采用水热法在其表面原位生长松针状网络结构NiCo2O4,制得NiCo2O4@CC复合材料,并应用于锂硫电池。NiCo2O4在碳纤维表面竖直生长形成三维纳米针簇网络,为硫的存储提供更多的空间,有效缓解硫电极的体积膨胀。通过吸附实验,证明了NiCo2O4@CC能有效吸附多硫化物,从而抑制多硫化物的穿梭效应。与CC/S相比(933 mAh·g-1),NiCo2O4@CC/S复合材料用于锂硫电池具有更优异的电池性能,在0.1C下初始放电比容量高达1 467 mAh·g-1,在0.2C下初始放电比容量为1 098 mAh·g-1,经200次循环后,放电比容量仍然保持在879 mAh·g-1,平均每圈衰减率为0.09%,表现出良好的循环性能。  相似文献   

16.
以石墨烯复合粉末为添加剂,采用一步水热法制备了一种SnS2/GCP微米复合材料。在所得到的复合材料中,SnS2纳米片相互缠绕组成多孔球状SnS2颗粒,石墨烯复合粉末均匀的包裹在球状SnS2颗粒表面。将所制备的SnS2/GCP微米复合材料用作锂离子电池负极材料测其电化学性能。结果显示,在0.1 A·g-1的电流密度下可逆比容量为795.6 mAh·g-1,循环100次后比容量损失不到1%。相比于SnS2其比容量和循环稳定性得到了明显改善,主要是由于石墨烯复合粉末的加入,不仅缓解了SnS2颗粒在充放电过程中的团聚和体积膨胀,而且还提高了SnS2颗粒的电导率。  相似文献   

17.
以氧化石墨烯(GO)为基底,在GO表面原位生长ZIF-67并作为模板,经硝酸镍刻蚀、碳化、水热硫化制得rGO/NiCo_2S_4复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)表征复合材料的结构与形貌。随后将rGO/NiCo_2S_4复合材料制成正极材料,测试其电化学性能,测试结果显示:rGO/NiCo_2S_4-1.5 h电极材料在1 A·g~(-1)的电流密度下,其比电容值高达1 577 F·g~(-1),当电流密度达到10 A·g~(-1)时,倍率性能为86.4%,在10 A·g~(-1)的电流密度下循环2 000次后,电容保持率为76.9%。另外,在6 mol·L-1KOH电解液中,由AC//rGO/NiCo_2S_4-1.5 h组成的不对称电容器在功率密度为723 W·kg~(-1)时,能量密度为33 Wh·kg~(-1);在高功率密度为7 277 W·kg~(-1)时,能量密度仍保持为23 Wh·kg~(-1)。  相似文献   

18.
通过静电纺丝法制备Mn4+掺杂的Co3O4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn4+掺杂,Co3O4复合纳米纤维的电化学性能得到明显改善。当nConMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co3O4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co3O4纳米纤维则是76.4%。  相似文献   

19.
通过静电纺丝法制备Mn~(4+)掺杂的Co_3O_4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn~(4+)掺杂,Co_3O_4复合纳米纤维的电化学性能得到明显改善。当nCo∶nMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co_3O_4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co_3O_4纳米纤维则是76.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号