首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱伟  聂敏 《物理学报》2013,62(13):130304-130304
本文提出了量子信令交换机的模型, 该交换机由经典信息控制模块、交换控制模块和量子交换模块三部分组成. 经典控制模块负责将纠缠初态信息传送给纠缠测量及交换单元并更新路由信息. 交换控制模块实现通路选择, 为纠缠对的分发提供通路. 量子交换模块制备纠缠对, 进行Bell态的测量, 完成纠缠交换. 量子信令交换机可以实现多用户间的信令传输及局域网通信. 通过对交换机的性能分析与仿真, 结果表明该交换机结构简单、安全保密、便于扩展、时延小, 对于构建量子通信网有很好的支撑作用. 关键词: 量子通信 量子信令网 量子信令交换机 纠缠交换  相似文献   

2.
We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang–bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.  相似文献   

3.
Controlling transport in quantum systems holds the key to many promising quantum technologies. Here we review the power of symmetry as a resource to manipulate quantum transport and apply these ideas to engineer novel quantum devices. Using tools from open quantum systems and large deviation theory, we show that symmetry-mediated control of transport is enabled by a pair of twin dynamic phase transitions in current statistics, accompanied by a coexistence of different transport channels. By playing with the symmetry decomposition of the initial state, one can modulate the importance of the different transport channels and hence control the flowing current. Motivated by the problem of energy harvesting, we illustrate these ideas in open quantum networks, an analysis that leads to the design of a symmetry-controlled quantum thermal switch. We review an experimental setup recently proposed for symmetry-mediated quantum control in the lab based on a linear array of atom-doped optical cavities, and the possibility of using transport as a probe to uncover hidden symmetries, as recently demonstrated in molecular junctions, is also discussed. Other symmetry-mediated control mechanisms are also described. Overall, these results demonstrate the importance of symmetry not only as an organizing principle in physics but also as a tool to control quantum systems.  相似文献   

4.
借用Grover搜索法给出了一类基态能控性(一般不是状态能控性的)的有限维量子系统实现不确定性状态控制的具体方案,并估计了实现状态控制的成功概率上界,讨论了实现该状态能控性的量子仿真.  相似文献   

5.
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.  相似文献   

6.
Utilizing model reference adaptive control theory and Lyapunov stability theorem, we derive the adaptive law for the model reference adaptive system. Then we design the Lyapunov control law by double control functions and investigate the orbit tracking of quantum state for non-Markovian quantum system with phase relaxation and energy dissipative relaxation. The influence of Ohmic reservoir with Lorentz-Drude regularization is numerically studied for a two-level system. The simulations show that the controlled quantum system will track the target orbit with a small oscillation due to the non-Markovian environmental memory effect, which indicates the orbit tracking of non-Markovian quantum system is incomplete.  相似文献   

7.
凌宏胜  田佳欣  周淑娜  魏达秀 《物理学报》2015,64(17):170301-170301
量子傅里叶变换是量子计算中一种重要的量子逻辑门. 任意量子位的傅里叶变换可以分解为一系列普适的单比特量子逻辑门和两比特量子逻辑门, 这种分解方式使得傅里叶变换的实验实现简单直观, 但所用的实验时间显然不是最短的. 本文利用优化控制和数值计算方法对Ising耦合体系中多量子位傅里叶变换的实验时间进行优化, 优化后的实现方法明显短于传统方法. 优化方法的核磁共振实验实现验证了其有效性.  相似文献   

8.
王丹琴  何创创 《物理学报》2015,64(4):43403-043403
利用量子失协的几何度量方案研究了双自旋海森堡模型中的量子关联特性, 得到了一般情形下两量子态量子失协度的解析表达式, 讨论了量子位之间的耦合强度、温度和外加磁场强度等对量子关联大小的影响, 并给出了对应的量子关联调控方案. 此外还发现在低温下量子失协存在突变的现象. 结果表明, 在双自旋的海森堡模型体系下, 可以通过对系统参数(如温度、耦合强度、磁场强度等)的调节来实现对量子关联大小的有效调控, 这将会对在量子信息科学中精确控制量子失协和实现量子态的隐形传输以及量子逻辑门的设计提供一定的借鉴和指导意义.  相似文献   

9.
We propose and discuss a novel concept of robust set stabilization by permissible controls; this concept is helpful when dealing with both a priori information of model parameters and different permissible controls including quantum measurements. Both controllability and stabilization can be regarded as the special case of the novel concept. An instance is presented for a kind of uncertain open quantum systems to further justify this generalized concept. It is underlined that a new type of hybrid control based on periodically perturbed projective measurements can be the permissible control of uncertain open quantum systems when perturbed projective measurements are available. The sufficient conditions are given for the robust set stabilization of uncertain quantum open systems by the hybrid control, and the design of the hybrid control is reduced to selecting the period of measurements.  相似文献   

10.
The control of light scattering is essential in many quantum optical experiments. Wavefront shaping is a technique used for ultimate control over wave propagation through multiple-scattering media by adaptive manipulation of incident waves. We control the propagation of single-photon Fock states through opaque scattering media by spatial phase modulation of the incident wavefront. We enhance the probability that a single photon arrives in a target output mode with a factor 30. Our proof-of-principle experiment shows that the propagation of quantum light through multiple-scattering media can be controlled, with prospective applications in quantum communication and quantum cryptography.  相似文献   

11.
Quantum state transfer (QST) is an important task in quantum information processing. In this study, we describe two approaches for the high-fidelity transfer of a quantum state between two opposite quantum dots attached to a multi-channel quantum network. First, we demonstrate that a high-efficiency QST can be achieved with the coherent time evolution of a quantum system without any external control. Second, we present an approach that uses an alternative mechanism for a high-fidelity QST. By adiabatically varying tunnel couplings, it is possible to implement the complete transmission of a quantum state based on this quantum mechanical mechanism.  相似文献   

12.
A scheme of a multiqubit quantum computer on atomic ensembles using a quantum transistor implementing two qubit gates is proposed. We demonstrate how multiatomic ensembles permit one to work with a large number of qubits that are represented in a logical encoding in which each qubit is recorded on a superposition of single-particle states of two atomic ensembles. The access to qubits is implemented by appropriate phasing of quantum states of each of atomic ensembles. An atomic quantum transistor is proposed for use when executing two qubit operations. The quantum transistor effect appears when an excitation quantum is exchanged between two multiatomic ensembles located in two closely positioned QED cavities connected with each other by a gate atom. The dynamics of quantum transfer between atomic ensembles can be different depending on one of two states of the gate atom. Using the possibilities of control for of state of the gate atom, we show the possibility of quantum control for the state of atomic ensembles and, based on this, implementation of basic single and two qubit gates. Possible implementation schemes for a quantum computer on an atomic quantum transistor and their advantages in practical implementation are discussed.  相似文献   

13.
Computer simulation of a many-particle quantum system is bound to reach the inevitable limits of its ability as the system size increases. The primary reason for this is that the memory size used in a classical simulator grows polynomially whereas the Hilbert space of the quantum system does so exponentially. Replacing the classical simulator by a quantum simulator would be an effective method of surmounting this obstacle. The prevailing techniques for simulating quantum systems on a quantum computer have been developed for purposes of computing numerical algorithms designed to obtain approximate physical quantities of interest. The method suggested here requires no numerical algorithms; it is a direct isomorphic translation between a quantum simulator and the quantum system to be simulated. In the quantum simulator, physical parameters of the system, which are the fixed parameters of the simulated quantum system, are under the control of the experimenter. A method of simulating a model for high-temperature superconducting oxides, the tJ model, by optical control, as an example of such a quantum simulation, is presented.  相似文献   

14.
Feedback is a significant strategy for the control of quantum system. Information acquisition is the greatest difficulty in quantum feedback applications. After discussing several basic methods for information acquisition, we review three kinds of quantum feedback control strategies: quantum feedback control with measurement, coherent quantum feedback, and quantum feedback control based on cloning and recognition. The first feedback strategy can effectively acquire information, but it destroys the coherence in feedback loop. On the contrary, coherent quantum feedback does not destroy the coherence, but the capability of information acquisition is limited. However, the third feedback scheme gives a compromise between information acquisition and measurement disturbance.  相似文献   

15.
Experimental demonstration of fully coherent quantum feedback   总被引:2,自引:0,他引:2  
In the conventional picture of quantum feedback, control sensors make measurements on a quantum system, a classical controller processes the results of the measurements, and semiclassical actuators act back on the system to alter its behavior. We describe and provide an experimental demonstration of an alternative method for quantum feedback control, in which the sensors, controller, and actuators of conventional feedback control are replaced with quantum systems that interact coherently with the system to be controlled. The resulting control system represents a fully coherent quantum feedback loop.  相似文献   

16.
《Physics letters. A》2020,384(35):126886
Designing robust control schemes in n-level open quantum system is significant for quantum computation. Here, we investigate two quantum control strategies based on supervised machine learning to suppress the quantum noise in an open quantum system. One is controlling state distance and the other is governing the average of a Hermitian operator. In this process, the dynamics of the system is mapped to a neural network where the control fields correspond to the weights. Besides, the system is transformed into the coherence Bloch space without using superoperator thus the complications are reduced largely. As an example, the two control protocols are demonstrated in a two-level and four-level systems, respectively. By applying these examples, the results show that the state of the system transfers to the target state and the average of a Hermitian operator to its minimum value in a given time despite disturbed by various types of noise.  相似文献   

17.
李俊  崔江煜  杨晓东  罗智煌  潘健  余琦  李兆凯  彭新华  杜江峰 《物理学报》2015,64(16):167601-167601
近年来, 随着量子信息科学的发展, 对由量子力学原理描述的微观世界的主动调控已成为重要的前沿研究领域. 为构造实际的量子信息处理器, 一个关键的挑战是: 如何对处于噪声环境下的量子体系实现一系列高精度的任意操作, 以完成目标量子信息处理任务. 为此, 人们将经典系统控制论的思想方法延伸到量子体系的领域, 提出了大量的量子控制方法以及相关的数值技术(如量子优化控制、量子反馈控制等), 并取得了丰富的研究成果. 核磁共振自旋体系具备成熟的系统理论和操控技术, 为量子控制方法的实用性研究提供了优秀的实验测试平台. 因此, 基于核磁共振的量子控制成为量子控制领域的重要方向. 本文简要介绍了量子控制的基本概念和方法; 从系统控制论的角度对核磁共振自旋体系的基本原理和重要控制任务做了阐述; 介绍了近些年来在该领域发展的相关控制方法及其应用; 对基于核磁共振体系的量子控制的进一步的研究做了几点展望.  相似文献   

18.
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.  相似文献   

19.
Transient nonlinear optical spectroscopy, performed on excitons confined to single GaAs quantum dots, shows oscillations that are analogous to Rabi oscillations in two-level atomic systems. This demonstration corresponds to a one-qubit rotation in a single quantum dot which is important for proposals using quantum dot excitons for quantum computing. The dipole moment inferred from the data is consistent with that directly obtained from linear absorption studies. The measurement extends the artificial atom model of quantum dot excitonic transitions into the strong-field limit, and makes possible full coherent optical control of the quantum state of single excitons using optical pi pulses.  相似文献   

20.
Optimising open quantum system evolution is an important step on the way to achieving quantum computing and quantum thermodynamic tasks. In this article, we approach optimisation via variational principles and derive an open quantum system variational algorithm explicitly for Lindblad evolution in Liouville space. As an example of such control over open system evolution, we control the thermalisation of a qubit attached to a thermal Lindbladian bath with a damping rate γ. Since thermalisation is an asymptotic process and the variational algorithm we consider is for fixed time, we present a way to discuss the potential speedup of thermalisation that can be expected from such variational algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号