首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
乙二醇溶液中圆锥泡声致发光的发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用一种改进后的U形管圆锥泡声致发光装置,研究了乙二醇溶液中圆锥泡声致发光的发光特性.实验结果表明,利用乙二醇溶液可以得到超强的单个发光脉冲,其脉冲宽度可以达到150 μs,其值远远高于其他方式产生的声致发光的脉冲宽度.测量得到的光谱为一从紫外到可见光波长范围的连续谱,在589 nm附近叠加有钠的3P-3S原子发射谱线.在钠的原子发射谱线两侧测量得到了Na-Ar分子激发态跃迁形成的蓝卫星带,并在声致发光实验中测得了Na-Ar的红卫星带以及钠的3S-4S原子发射谱线. 关键词: 圆锥泡声致发光 光脉冲 光谱 卫星带  相似文献   

2.
A modified U-tube conical bubble sonoluminescence device is used to study the conical bubble photoluminescence. The spectra of conical bubble sonoluminescence at different concentrations of rhodamine 6G (Rh6G) solution in 1,2-propanediol have been measured. Results show that the sonoluminescence from the conical bubbles can directly excite Rh6G, which in turn can fluoresce. The light emission of this kind is referred to as conical bubble photoluminescence. The maximum of fluorescence spectral line intensity in the conical bubble photoluminescence has a red shift in relative to that of the standard photo-excited fluorescence, which is due to the higher self-absorption of Rh6G, and the spectral line of conical bubble photoluminescence is broadened in width compared with that of photo-excited fluorescence.  相似文献   

3.
The sonoluminescence of liquid sulfur has been observed for temperatures of 120–180°C. The sonoluminescence intensity of the sulfur melt is 109 photons/s at 120°C. As the temperature increases, the luminescence intensity decreases nonmonotonically, a maximum is observed at 160–175°C, and cavitation and luminescence cease at 180°C. The dependence obtained correlates with the temperature dependence of the viscosity of the sulfur melt. The sonoluminescence spectrum obtained with a resolution of 10 nm for 130–150°C contains one band with λmax = 560 nm, the emitter of which is likely an (S+)* ion. When the melt is saturated with argon, the sonoluminescence intensity increases by an order of magnitude; in this case, the spectral band shape changes only slightly. The results confirm the “electric” theory of multibubble sonoluminescence. In the process of the sonolysis of the sulfur melt, biradical fragments are formed in cavitation bubbles consisting of sulfur molecules, which initially have the form of cyclooctasulfur S8. These fragments can enter into the melts and can be involved in various chemical reactions. This circumstance makes it possible to recommend ultrasonic activation for reactions of sulfurization of hydrocarbons.  相似文献   

4.
Sonoluminescence     
《应用光谱学评论》2013,48(3):399-436
Abstract

Sonoluminescence is the light emission phenomenon from collapsing bubbles in liquid irradiated by an ultrasonic wave. In the present review, theoretical and experimental studies of the two types of sonoluminescence [single‐bubble sonoluminescence (SBSL) and multibubble sonoluminescence (MBSL)] are described. SBSL is a sonoluminescence from a single stably pulsating bubble trapped at the pressure antinode of a standing ultrasonic wave. MBSL is a sonoluminescence occurring from many bubbles in liquid irradiated by an ultrasonic wave. The theoretical and experimental studies suggest that SBSL originates in emissions from plasma inside the heated bubble at the bubble collapse, whereas MBSL originates both in emissions from plasma and in chemiluminescence inside heated bubbles at the bubble collapse. Unsolved problems of sonoluminescence have also been explained in detail.  相似文献   

5.
圆锥气泡发光的光谱性质   总被引:1,自引:0,他引:1       下载免费PDF全文
在改进的U型管装置中观察到一种圆锥气泡声致发光现象。声致发光产生的单个光脉冲的能量可达到约1.4 毫焦. 脉冲宽度约100 毫秒。发光光谱由连续光谱上叠加C2,CN,和CH的激发态光谱构成。这种圆锥气泡声致发光为单泡声致发光和多泡声致发光提供了一种联系。  相似文献   

6.
The spectral shape and observed sonoluminescence emission from Xe bubbles in concentrated sulfuric acid is consistent only with blackbody emission from a spherical surface that fills the bubble. The interior of the observed 7000 K blackbody must be at least 4 times hotter than the emitting surface in order that the equilibrium light-matter interaction length be smaller than the radius. Bright emission is correlated with long emission times (approximately 10 ns), sharp thresholds, unstable translational motion, and implosions that are sufficiently weak that contributions from the van der Waals hard core are small.  相似文献   

7.
I.IntroductionSonoluminesccnce(SL)isawcakemissionoflightobscrvcdwhenacousticcavitationisformcdina1iquidmedium,andmanyrescarchersfoundtheemissioncontinuumtoextendfromtheinfraredtotheu1traviolctrcgion.Althoughthesono1uminescencchasbccninvcstigatcdoverhalfaccntury,untilthcprcscnttime,thcrcaresevera1differentthcoriesontheluminousmechanismandon1yvcryfeworPublishcdpapersareontheapplicationorthcso..1..i..s....cIl-3].Thcsono1uminescenccisstillinitsearlystageofdcvclopmentI'].Thcrcfrnrc,itisncccssary…  相似文献   

8.
A new approach is proposed for explaining the experimental data on sonoluminescence of acoustic and laser-induced cavitation bubbles. It is suggested that two different sonoluminescence mechanisms, namely, thermal and electric ones, are possible and that they manifest themselves depending on the bubble dynamics. An intense thermal luminescence occurs as a result of compression of an individual stationary spherical bubble; a weak electric luminescence accompanies the deformation and splitting of the bubble when thermal luminescence is suppressed (for example, in the case of multibubble sonoluminescence). It is shown that, when an individual bubble loses its spherical shape under the effect of different actions (change in the acoustic pressure, artificial deformation, translatory motion, etc.) or when a laser-induced bubble undergoes fragmentation, the sonoluminescence spectrum exhibits specific bands that are similar to the bands in the multibubble sonoluminescence spectrum. The appearance of these bands is attributed to the suppression of the thermal sonoluminescence mechanism and the manifestation of the electric mechanism. It is shown that the maximum temperature T max characterizing the compression of a laser-induced bubble is primarily determined by the temperature of the plasma at the instant of the laser-induced breakdown, whereas, for an acoustic bubble, T max is primarily determined by the acoustic and hydrostatic pressures and by the saturation vapor pressure of the liquid.  相似文献   

9.
Results of spectroscopic investigation of a multibubble sonoluminescence and a hydrodynamic luminescence of glycerol in the optical range between 400 and 700 nm and in the X-ray spectral interval between 1 and 70 keV are presented. Continuous spectrum the shape of which is sufficiently well described by the normal distribution with respect to photon energy was obtained for both sono- and hydroluminescence in the optical spectral range. Based on the identity of the spectra, a conclusion can be drawn that the effects of the sono- and hydroluminescence are of the same physical nature. The shape of the obtained spectra suggests that the observed glow of a liquid under mechanical action represents fluorescence of only one type of centers in a condensed medium. X-ray radiation is absent in the specified energy range. Although an X-ray spectrometer detects some a signal of some kind, in reality, this turns out to be noise created by the magnetostrictive transducer of an ultrasonic generator.  相似文献   

10.
The average pressure inside a sonoluminescing bubble in sulfuric acid has been determined by two independent techniques: (1) plasma diagnostics applied to Ar atom emission lines, and (2) light scattering measurements of bubble radius vs time. For dimly luminescing bubbles, both methods yield intracavity pressures approximately 1500 bar. Upon stronger acoustic driving of the bubble, the sonoluminescence intensity increases 10,000-fold, spectral lines are no longer resolved, and radius vs time measurements yield internal pressures > 3700 bar. Implications for a hot inner core are discussed.  相似文献   

11.
The results of the numerical simulation of the behavior of a system consisting a spherical bubble filled with gaseous argon and surrounded by water under the impact of an external periodic pressure are presented. It is shown that, under typical conditions for the experimental investigation of single-bubble sonoluminescence in such a system, conditions are created for its thermal ionization near the time instant of the maximum compression in the gas. This proves one of the main provisions of the polarization model of sonoluminescence.  相似文献   

12.
Multi-bubble sonoluminescence spectra of 85% H3PO4 and the dependences of sonoluminescence intensity on the acid concentration and temperature are obtained. The spectra contain a weakly structured 300–600-nm band formed by the superposition of radiation from several emitters (presumably, oxygencontaining products of acid sonolysis, viz., PO, HOPO, and PO2). Weak luminescence at a wavelength exceeding 600 nm can be due to emission from excited O* and Ar* atoms. The shape of the fundamental band changes upon a transition from multi-bubble sonolysis to sonolysis in the setup for one-bubble sonoluminescence, in which several clusters of cavitation bubbles are formed in a spherical flask at ultrasonic frequencies multiple of the first acoustic resonance frequency (multi-cluster sonoluminescence). The form of the temperature dependence of the sonoluminescence intensity depends on the detection regime: for natural heating of 85% acid under the action of ultrasound, a curve with a luminescence peak at 40°C is observed, while in detection with preliminary thermostating “over points,” only an inflection exists on a monotonic curve describing a decrease of intensity upon heating. An analogous curve for acids with a lower viscosity (hydrochloric and nitric acids) has neither a peak nor inflection irrespective of the detection regime. It is concluded that the viscosity of phosphoric acid plays a decisive role in the evolution of cavitation and in obtaining intense sonoluminescence.  相似文献   

13.
Sonoluminescence: nature's smallest blackbody   总被引:2,自引:0,他引:2  
The transduction of sound into light through the implosion of a bubble of gas leads to a flash of light whose duration is delineated in picoseconds. Combined measurements of spectral irradiance, Mie scattering, and flash width (as determined by time-correlated single-photon counting) suggest that sonoluminescence from hydrogen and noble-gas bubbles is radiation from a blackbody with temperatures ranging from 6000 K (H(2)) to 20,000 K (He) and a surface of emission whose radius ranges from 0.1 microm (He) to 0.4 microm (Xe) . The state of matter that would admit photon-matter equilibrium under such conditions is a mystery.  相似文献   

14.
Jin-Fu Liang 《中国物理 B》2022,31(11):117802-117802
The most recent spectroscopic studies of moving-single bubble sonoluminescence (MSBSL) and multi-bubble sonoluminescence (MBSL) have revealed that hydrated electrons (e$_{{\rm aq}}^{-}$) are generated in MSBSL but absent in MBSL. To explore the mechanism of this phenomenon, we numerically simulate the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl$_{3}$). The results show that the maximum degree of ionization of single-bubble sonoluminescence (SBSL) is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons (e$_{{{\rm aq}}}^{-}$) formed in SBSL are far more than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore, the quenching of e$_{{{\rm aq}}}^{-}$ to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)] ion line intensities from SBSL in the TbCl$_{3}$ aqueous solutions with the acceptor of e$_{{{\rm aq}}}^{-}$ are stronger than those of TbCl$_{3}$ aqueous solutions without the acceptor of e$_{{{\rm aq}}}^{-}$. Whereas the Tb(III) ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.  相似文献   

15.
Ultrasonic irradiation of solutions containing volatile organometallic complexes results in intense emission from excited-state metal atoms. We have determined the effect of dissolved gases (Xe, Kr, Ar, Ne, He, CF4, C2F6, CO, N2) on the intensity of the sonoluminescence resulting from ultrasonic irradiation of silicone oil solutions of Cr(CO)6. This provides a well-defined, spectrally resolved probe of sonoluminescence with emission resulting from a single species, the chromium atom excited states. As predicted by the hot-spot, thermal mechanisms of sonoluminescence, the intensity of excited-state Cr emission decreases with increasing thermal conductivity of the noble gases. The intensity of sonoluminescence increases with increasing γ (i.e. Cp/Cv), which is also in accord with a thermal mechanism. Sonoluminescence is substantially diminished by the addition of even small amounts (≈ 1%) of CF4 or C2F6, even though they are capable of supporting electrical discharge. This is in agreement with a thermal mechanism, but is in direct conflict with electrical theories of sonoluminescence.  相似文献   

16.
Purging of solutions to enhance sonochemical reactions is a common practice. A fundamental study combining sonoluminescence spectroscopy and sonochemical activity is adopted to study the effects of continuous Ar gas flow in the solution and of the position of the gas inlet tube on high-frequency sonolysis of aqueous solutions. It has been observed that neither sonochemical activity nor sonoluminescence intensity is controlled by the gas solubility only. Besides, the change in position of the gas inlet tube leads to opposite effects in sonoluminescence intensity and sonochemical activity: while the former increases, the latter decreases. Such an observation has never been reported despite sonochemical reactions have been carried out under different gas environments. Sonoluminescence spectroscopy indicates that more extreme conditions are reached at collapse with the gas inlet on the side, which could be explained by a more symmetrical collapse. Finally, it is shown in certain conditions that it is possible to favor the formation of some sonochemical products simply by positioning the gas inlet at different positions, which has practical significance in designing large scale sonochemical reactors for industrial applications.  相似文献   

17.
Sonoluminescence is a process by which light is emitted from collapsing ultrasound-driven gas bubbles in a liquid. Recent works on sonoluminescence have shown that many parameters of the dissolved gas, surrounding liquid and external conditions influences this phenomenon [10]. The light intensity and emitted light spectra depends mainly on the fluid and dissolved gases properties [9,13]. These features indicate the possibility of estimating the amount of dissolved chemical compounds in liquids. The use of sonoluminescence for aging properties diagnostic of insulation oils was proposed. This article presents the schematic of used measurement setup and points out the difficulties in the research resulted from subtleness of the process and no fully accepted sonoluminescence theory.  相似文献   

18.
Hayashi S  Nozaki K  Hatanaka S 《Ultrasonics》2006,44(Z1):e431-e433
Single-bubble sonoluminescence is generated in concentrated aqueous solutions of LiBr and LiCl. The moving-bubble state, a type of unstable state in which sonoluminescence is still emitted, is observed above the stable-sonoluminescence state similarly to that in aqueous solutions of NaCl and KCl. Luminosity is increased at similar magnitudes for LiBr, LiCl, NaCl and KCl of the same concentration.  相似文献   

19.
Cavitation activity stimulation by low frequency field pulses   总被引:3,自引:0,他引:3  
The influence of a short-time action of a low-frequency ultrasound on the sonoluminescence generation by a high frequency pulsed field has been studied. This action remarkably lowers the cavitation thresholds and increases the sonoluminescence intensity. The stimulating effect of the low-frequency field action depends on its duration and on the intensities of both fields. Possible mechanisms of this effect are discussed.  相似文献   

20.
An unsolved challenge of sonoluminescence phenomenon is the mechanism of light emission at the moment of collapse. In this article, by considering single-bubble sonoluminescence and based on the hydrochemical model and thermal bremsstrahlung approach, for the first time two different origins of light have numerically been studied to describe the Ar bubble radiation in water at the moment of collapse: (a) radiation from the Ar gas inside the bubble and (b) radiation from the thin layer of the surrounding fluid. The results indicate that, contrary to the previous studies, the radiation from the water shell is dominant, and it is about one order of magnitude stronger than the radiation from the gas inside the bubble. This result can decrease the difference between the theoretical results and the previous experimental data. In addition, based on the role of acoustic pressure amplitude on the characteristics of single-bubble sonoluminescence, various parameters such as degree of ionization, gas pressure, temperature and power were calculated. The results are in excellent agreement with the reported experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号