首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new three-parameter cubic equation of state of the van der Waals type with one parameter temperature dependent, P = RT/(V − b) − a(T)/[V(V + c) + b(3V + c)], has been developed for representation of liquid volumes (or densities) for asymmetric mixtures such as CO2C19 and C1C10. The calculated results are better than those obtained from the two-parameter Peng—Robinson equation, the three parameter Schmidt—Wenzel equation, the volume-translated Soave—Redlich—Kwong equation proposed by Peneloux et al., and the volume-translated Peng—Robinson equation developed in this work. The parameters of the new equation have been generalized in terms of the acentric factor ω and reduced temperature Tr.  相似文献   

2.
F---F steric interaction between the two 6,6′-fluorines of the C6F4 rings in C12F8Ge(C6H5)2 cause quite distortions in the molecule as these two fluorine atoms are forced to within 2.419 Å of each other (Van der Waals distance ⋍ 2.7 Å). Crystal data: C12F8Ge(C6H5)2, Mr 522.89, C2/c, a 29.065(2), b 8.066(2), c 23.000(3) Å, β 129.85°, U 4139.63 Å3, Z = 8, Dx 1.678 Mg m−3, Mo-Kα, λ 0.7107 Å, μ 15.58 cm−1, F(000) = 2064, T 293 K, R = 0.044 for 2264 reflections with I > 3σ(I); Δϱ ± 0.5 e  相似文献   

3.
4.
The single crystal X-ray analyses of sublimated (C5H5)3Er (6) and (C5H5)3Tm (7) confirm, for the first time, the existence of coordinatively well-saturated molecules containing just three η5-C5H5 ligands per metal ion (formal coordination number: 9, space group: Pna21, lattice parameters: a 1972.1(3), b 1389.4(1), c 862.4(3) pm for 6, and a 1999.1(3), b 1379.8(4), c 1379.8(4), c 857.8(3) pm for 7; R = 0.076 and 0.047, respectively). Individual molecules align themselves into chains by Van der Waals interactions. The structures of 6 and 7 show a marked contrast to those of their La und Pr homologues on the one hand, and with the structure of (C5H5)3Lu on the other.  相似文献   

5.
The thermodynamic properties of a series of polystyrene samples with different molecular weights (M w was varied from 2.5·103 to 6.57·104) were studied by precision adiabatic vacuum, high-accuracy dynamic, and combustion calorimetry: temperature dependences of the heat capacity in a wide temperature range, thermodynamic characteristics of glass transition and glassy state under standard pressure, and energy of combustion. The thermodynamic functions C p (T), H (T) - H (0), S (T) - S (0), and G (T) - H (0) of polystyrene with different molecular weights, enthalpies of combustion Δc H , thermodynamic parameters of formation from simple substances Δf H , Δf S , and Δf G at T = 298.15 K, and parameters of their synthesis from monomers were calculated from the experimental data. The temperature dependences of the heat capacity for a region of 0–380 K, glass transition temperatures, and thermodynamic characteristics of formation and synthesis of polystyrene depending on its molecular weight were examined.  相似文献   

6.
The title compound (1) was prepared in high purity by reducing 3,3-dibromo-2,2,4,4-tetra-methylpentane (2) with magnesium in the last step. The heat of combustion, ΔH0c(c), of 1 was measured using an aneroid isoperibol microcalorimeter and the heat of sublimation, ΔHsub, was obtained from the vapour pressure (35–93°C) measured in a flow system. The results: ΔH0c(c) = ?2913.3(±0.9), ΔH0f(c) = ?77.6(±0.9) and ΔH0f(g) = ?59.9(±0.9) kcal mol?1 lead to an outstandingly high value for the excess strain enthalpy (Hs = 66.3 kcal mol?1) revealing strong van der Waals repulsions in this highly crowded alkane.  相似文献   

7.
The atomic structure of europium acrylate crystals [Eu2(Acr)5OH·3H2O]·2(0.5H2O) was studied by X-ray analysis (a = 24.360(3) Å, b = 18.466(2) Å, c = 8.5818(9) Å, β = 96.087(2)°, space group C2/c, Z = 6, ρcalc = 2.036 g/cm3). The crystal structure involves chains of binuclear [Eu2(C3H3O2)5OH·3H2O] molecules, running infinitely in the [101] direction and having pairs of C9H9EuO7H2O molecules alternating with C6H6EuO4OH·2H2O molecules that link the pairs. The infinite chains are linked by hydrogen bonds and van der Waals interactions. The thermal behavior of luminescence of the europium(III) complex is discussed.  相似文献   

8.
The low-temperature (5 to 310 K) heat capacity of cesium fluoroxysulfate, CsSO4F, has been measured by adiabatic calorimetry. At T = 298.15 K, the heat capacity Cpo(T) and standard entropy So(T) are (163.46±0.82) and (201.89±1.01) J · K?1 · mol?1, respectively. Based on an earlier measurement of the standard enthalpy of formation ΔHfo the Gibbs energy of formation ΔGfo(CsSO4F, c, 298.15 K) is calculated to be ?(877.6±1.6) kJ · mol?1. For the half-reaction: SO4F?(aq)+2H+(aq)+2e? = HSO4?(aq)+HF(aq), the standard electrode potential E at 298.15 K, is (2.47±0.01) V.  相似文献   

9.
Accurate quantum-chemical ab initio calculations have been performed at the SCF and CEPA (coupled electron pair approximation) levels for the van der Waals interaction in the X 2 Σ + ground state of LiHe. An extended basis set has been used and the counterpoise correction for the basis set superposition error (BSSE) has been applied. The calculated potential energy curve has a very shallow minimum at 11.56 a 0 with a well depth of only 1.49 cm?1. This is too small to allow for a bound vibrational level. The analysis of the results shows that the interaction mainly consists of the Pauli repulsion between Li(1s 22s) and He (1s 2), which is decaying exponentially, and the attractive London dispersion energy. Van der Waals coefficients C6, C8, and C10 have been determined by a least squares fit to the long-range part of the calculated potential curve.  相似文献   

10.
The extraction of cerium(III) from weakly acidic chloride solutions by HDEHP-nitrobenzene-loaded polyurethane foams could be analyzed quantitatively in terms of the equation: log(9.056 Dc)=log Kc+2.14 log (Cd?6Cc)+3 pH+log fc where Dc is the distribution ratio of cerium(III) between the foam and aqueous phases, Cd and Cc are the total HDEHP and Ce(III) concentrations on the foam, respectively, log fc=[Ce3+](sq)/[ΣCe(III)](aq), and Kc is the equilibrium constant of the equation: Ce (aq) 3+ +2.14(HX)2.8(o) ? ? CeX6·H3(o)+3H (aq) + . Values of Kc under the different extraction conditions tested are given.  相似文献   

11.
Quantum-chemical ab initio calculations have been performed for the van der Waals interaction between helium and oxygen atoms in their respective ground states: He(1S)+ O(3P). As long as fine-structure effects are neglected, there are two low-lying electronic states, 3Σ? and 3Π resulting from the degeneracy of the O(3P) ground state. Both states are purely repulsive at the SCF level, after inclusion of electronic correlation by the CEPA method they exhibit shallow van der Waals (dispersion) minima at large interatomic separation: R? = 3.61 Å, ? = 1.0 meV (3Σ?) and R? = 3.05 Å, ? = 2.3 meV (3Π). The analysis of the results shows the very slow convergence of the dispersion interaction with increasing basis size, while SCF repulsion and the repulsion due to the change of the intra-atomic correlation are obtained reasonably accurately with moderate basis stes. Van der Waals coefficients C6, C8, C10, potential curves of the type HFD (i.e. Hartree-Fock plus damped dispersion) and the influence of fine-structure effects (mainly spin-orbit coupling) on the shape of the adiabatic potential curves are discussed as well.  相似文献   

12.
The single-crystal X-ray diffraction analysis of [UO2(SeO4)(C2H4N4)2] · 0.5H2O (I) is performed. The crystals are monoclinic: space group C2/c, Z = 8, a = 19.035(2), b = 7.1326(8), c = 21.477(2) Å, β = 109.683(4)°. The main structural units of the crystal are chains of [UO2(SeO4)(C2H4N4)2]. Compound I belongs to the crystal-chemical group AT3M 2 1 (A = UO 2 2+ , T3 = SeO 4 2? , M1 is a cyanoguanidine molecule) of the uranyl complexes. The chains are united into three-dimensional framework through hydrogen bonds involving the oxygen atoms of the selenate and uranyl groups, the nitrogen atoms of cyanoguanidine, and the hydrogen atoms of the cyanoguanidine or water molecules.  相似文献   

13.
A powdered sample of uranyl oxalate [UO2(C2O4)(D2O)] · 2D2O (compound I) is studied using neutron diffraction. The crystals are monoclinic, space group P21/c, with a = 5.608(1) Å, b = 17.016(3) Å, c = 9.410(2) Å, β = 98.9369(2)°, Z = 4, R f = 0.042, R I = 0.054, x 2 = 1.5. The main structural units of the crystals are [UO2(C2O4)(D2O)] chains. These chains, which belong to the AK02M1 (A = UO 2 2+ ) crystal-chemical group of the uranyl complexes, lie parallel to [101]. The water molecules in the crystals of I are hydrogen-bonded into zigzag chains running along [100]. Since each third oxygen atom of the chain formed of water molecules is coordinated to the uranium atom, the uranyl oxalate chains are linked into {[UO2(C2O4)(D2O)] · 2D2O} layers that lie normal to [010]. The layers are linked into the framework through interlayer hydrogen bonds (D2O)O-D···O (oxalate).  相似文献   

14.
Gaseous WS2Cl2 and WS2Br2 are formed by the reaction of solid WS2 with chlorine resp. bromine at temperatures of about 1000 K. This could be shown by mass spectrometric measurements. The heats of formation and entropies of WS2Cl2 and WS2Br2 have been determined by means of mass spectrometry (MS) and quantum chemical calculations (QC). WS2I2 could not be detected by experimental methods. This is in line with the quantum chemically determined equilibrium constant of the formation reaction. The following values are given:, ΔfH0298(WS2Cl2) = –230.8 kJ · mol–1 (MS), ΔfH0298(WS2Cl2) = –235.0 kJ · mol–1 (QC),, S0298(WS2Cl2) = 370.7 J · K–1 · mol–1 (QC) and, cp0T(WS2Cl2) = 103.78 + 7.07 × 10–3 T – 0.93 × 105 T–2 – 3.25 × 10–6 T2 (298.15 K < T < 1000 K) (QC). ΔfH0298(WS2Br2) = –141.9 kJ · mol–1 (MS), ΔfH0298(WS2Br2) = –131.5 kJ · mol–1 (QC),, S0298(WS2Br2) = 393.9 J · K–1 · mol–1 (QC) and, cp0T(WS2Br2) = 104.84 + 5.32 × 10–3 T – 0.75 × 105 T–2 – 2.45 × 10–6 T2 (298.15 K < T < 1000 K) (QC). ΔfH0298(WS2I2) = –18.0 kJ · mol–1 (QC), S0298(WS2I2) = 409.9 J · K–1 · mol–1 (QC) and, cp0T(WS2I2) = 105.17 + 4.77 × 10–3 T – 0.67 × 105 T–2 – 2.19 × 10–6 T2 (298.15 K < T < 1000 K) (QC). These molecules have the expected C2v‐symmetry.  相似文献   

15.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

16.
Cuprocobaltites RBaCuCoO5 + gd(R = Nd, Sm, Gd) were prepared. Their unit cell parameters were determined, and thermal expansion, electrical conductivity (σ), and Seebeck coefficient (S) were studied in air in the range 300–1100 K. The compounds have tetragonal structures (space group P4/mmm, Z = 1). Their unit cell parameters are a = 0.3906(2) nm, c= 0.7648(7) nm for NdBaCuCoO5.21; a = 0.3904(2) nm, c = 0.7609(6) nm for SmBaCuCoO5.06; and a = 0.3891(2), c = 0.7592(6) nm for GdBaCuCoO5.02. The RBaCuCoO5 + δ cuprocobaltites at room temperature are p-type semiconductors, whose electrical conductivity and linear thermal expansion coefficient (LTEC) increase with increasing R3+ ionic radius, whereas the Seebeck coefficient decreases. The LTECs of RBaCuCoO5 + δ phases in the range 500–575 K increase by a factor of 1.2–1.5 because of the elimination of weakly bound oxygen. S = f(T) curves for RBaCuCoO5 + δ (R = Nd, Sm, Gd) feature maxima at 510 K for R = Sm and 365 K for R = Gd, probably, due to the change in the spin state of cobalt cations in these phases.  相似文献   

17.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

18.
N,N,N??,N??-tetramethylethylenediamine is obtained by the reaction of ethylenediamine with formaldehyde and formic acid (the Eschweiler-Clarke reaction) and then alkylated with allyl chloride (or bromide) in a ratio of 1:1 or 1:2 to obtain N-allyl-N,N,N??,N??-tetramethylethylenediaminium and N,N??-diallyl-N,N,N??,N??-tetramethylethylenediaminium bromide respectively. [{C2H4N2(H+)(CH3)4(C3H5)}Cu4Cl6] (1) and [{C2H4N2(CH3)4(C3H5)2}0.5Cu2Cl1.67Br1.33] (2) ??-complexes are obtained from alcohol solutions containing an ethylenediamine derivative and copper(II) chloride by ac-electrochemical synthesis on copper wire electrodes. An XRD study of the complexes is carried out. The crystals are monoclinic; 1: P21/n space group, a = 9.0081(6) ?, b = 12.5608(7) ?, c = 16.8610(10) ?, ?? = 102.061(3)°, V = 1865.7(2) ?3, Z = 4; 2: C2/c space group, a = 14.462(2) ?, b = 12.519(1) ?, c = 12.762(2) ?, ?? = 107.861(5)°, V = 2199.1(4) ?3, Z = 8. The structure of 1 consists of infinite copper halide networks with four crystallographically independent copper atoms, one of which coordinates the double bond of the allyl group of the ligand. The [C2H4N2(H)(CH3)4(C3H5)]2+ cations are attached above and below the plane of the network. The individual fragments are bonded via an extensive system of (N)H??Cl and (C)H??Cl hydrogen bonds. The structure of 2 contains a three-dimensional copper halide framework whose cavities contain the [C2H4N2(CH3)4(C3H5)2]2+ cations that are ??-coordinated with copper(I) atoms. In both structures, the Cu(I) atom that coordinates the C=C bond has a trigonal-pyramidal coordination environment consisting of the double C=C bond of the corresponding ligand and three halogen atoms. The other Cu(I) atoms have a tetrahedral environment consisting solely of halogen atoms. The Cu-(C=C) distance is 1.958(1) ?, (1) and 1.974(1) ? (2).  相似文献   

19.
The 57Fe Mössbauer effect in two samples (A and B) of [Fe(papt)2] and in its solvates with CHCl3 and C6H6 has been studied between 4.2 and 343 K and clearly indicates a temperature induced high-spin (5T2) ? low-spin (1A1) transition in these compounds [paptH = 2-(2-pyridylamino)-4-(2-pyridyl) thiazole]. At 343 K, sample B shows a doublet with ΔEQ = 2.03 mm s?1 and δIS = +0.87 mm s?1, characteristic of a 5T2 ground state. At 257 K, a second doublet, typical for a 1A1 ground state, is observed and its intensity increases as the transition progresses but levels off below ~ 100 K. At 4.2 K, 83% of the intensity is due to the 1A1 state, and ΔEQ(1A1) = 1.56 mm s?1 and δIS(1A1 = +0.32 mm s?1. In an applied magnetic field, Vzz(1A1) < 0 and η ≈ 0.7 have been determined, whereas for the sT2 ground state, Vzz(sT2) > 0, η ≈ 0.75, and an internal hyperfine field Hn ≈ ?13 kG have been observed. Similar results have been obtained with the other samples.Debye-Waller factors f5T2 and f1A1 were determined from the saturation corrected areas in the Mössbauer spectra, assuming Curie-Weiss dependence of the magnetic susceptibility for the 5T2 and constant υcff for the 1A1 ground state. The temperature dependence of ?In f1A1 closely follows the Debye model with Θ1A1 = 165 K, whereas the same applies to ?ln f5T2 only above ~ 210 K and Θ5T2 = 134 K. The nature of the observed transition is discussed and the data presented are shown to be incompatible with a model based on a Boltzmann distribution between the two states.  相似文献   

20.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号