首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular functions and structural changes of membrane proteins in an aqueous environment can be elucidated by reaction-induced FTIR difference spectroscopy upon photolysis of caged compounds. The achieved detection of IR band changes even due to single amino acid residues is, however, only possible in the presence of very high protein concentrations, implying that a low water content must be present. In general, the films are formed by controlled dehydration of membrane protein suspensions at reduced pressure and low temperature. For the retention of enzymatic activity of Na,K-ATPase, for example, a cosolvent such as glycerol is required. In order to interprete the results obtained by FTIR spectroscopy, it is important to know whether essential properties of the proteins such as hydration are changed upon film formation. Therefore, a differential scanning calorimetry (DSC) study has been carried out with purified Na,K-ATPase and Ca-ATPase in suspension, in form of pellets obtained by high-speed ultracentrifugation and in thin films. As relevant thermoanalytical properties, the endothermic denaturation transitions of the proteins have been studied. For Na,K-ATPase in the presence of 20% glycerol as cosolvent, a single, comparatively narrow endothermic and irreversible denaturation transition with a denaturation enthalpy of about 1.7 MJ mol−1 and transition temperatures of about 65 and 70°C is found in concentrated suspension and in the state of the pellet, respectively. In the case of thin films suitable for IR spectroscopy, a characteristic change is observed in a reproducible manner. The enthalpy change of the remaining transition around 70°C is reduced but an additional transition at about 77°C is observed. Based on control experiments, the new high temperature transition is attributed to a partially dehydrated state of the protein. Furthermore, a comparatively broad endothermic transition around 20°C is found under conditions of high protein concentrations (film), which is tentatively assigned to a transition of the lipid environment of this integral membrane protein. Similar results are found for Ca-ATPase films. In the absence of glycerol, the deoxycholate treated enzyme in suspension exhibits a narrow endothermic main transition at 52°C with a denaturation enthalpy around 0.9 MJ mol−1. For the film of this protein, two almost equally large endothermic transitions are found at 59 and 77°C. Also here, the data are characteristic of partial protein dehydration. These results show clearly that DSC can easily be applied in a sensitive manner to control and characterize the integrity and hydration properties of concentrated protein samples in thin films.  相似文献   

2.
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low‐temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small‐angle X‐ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high‐temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP‐based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.  相似文献   

3.
Vesicles composed of N-[3-(dimethylamino) propyl]-octadecanamide (DMAPODA) and 2-(hexadecyloxy) cinnamic acid (HOCA) in an equimolar ratio were prepared by taking advantage of salt bridge formed between the amino group and the carboxylic group. The structure of vesicle was observed on a Transmission electron microscopy (TEM), and the size was determined on a dynamic light scattering equipment. The phase transition of the vesicular membrane was found to be around 35 °C on a differential scanning calorimeter. HOCA of the vesicular membrane was readily dimerized under the irradiation of a UV light (λ?=?254 nm, 6 W). The release degree of rhodamine B from vesicle suspended in distilled water (pH 6.8) was about 70 % in 1 h at 25 °C, and the UV irradiation during the release experiment had little effect on the release degree. However, it had a significant effect when the temperature of release medium was 40 °C. Upon the photodimerization, HOCA would readily change its orientation in the vesicular membrane vesicle at 40 °C, possibly because the vesicular membrane is in a liquid crystalline state at the temperature, which is higher than the phase transition temperature (around 35 °C). In addition, the vesicle released rhodamine B in a pH-dependent manner. The release degrees were the highest at pH 3.0 and the lowest at pH 9.0 among the pH values tested. The salt bridge formed between DMAPODA and HOCA is labile at a strong acidic condition so it would be responsible for the extensive release at pH 3.0.  相似文献   

4.
The thermotropic transitions of 1,2-dipalmitoylphosphatidylcholine (DPPC) and the structural changes of its lamellar phases have been studied between 0 and 50°C by both DSC and synchrotron small angle X-ray diffraction/scattering as a function of temperature (XRDT) and sodium taurocholate concentration [TC] in the 0–40 mM range ([DPPC]=50 mM) at pH 7.4. The existence of multiple phase transitions (up to 5 peaks within a 5°C interval) in a narrow domain of temperature between 25 and 42°C depending on the [TC]/[lipid] ratio was observed in the DSC curves. XRDT showed that at low ratios they might correspond to transitions between lamellar phases, the structural characteristics of which are given. At higher ratios a lamellar to micellar transition was observed, and the temperature at which it was observed decreased as a function of the TC content. The relationships with DPPC vesicle bilayer permeabilization and solubilization are discussed.  相似文献   

5.
New conductive thermotropic liquid crystalline materials having a piperazine ring in the central core: 1-[4-(9-decenyloxy)phenyl]-4-alkylpiperazines (6) were synthesized. The mesomorphic behaviours of these compounds and their conductivity in the liquid crystal phase were measured. The principal features of these compounds are to exhibit a smectic B phase around room temperature (for example 6: Cr 50 SmB 81 I, °C) and to exhibit a large dark current (6d: 430 μA cm?2, applied voltage 20 V, at 70°C) in the smectic B phase.  相似文献   

6.
Unsymmetrical gold(III)-dithiolene complexes are potential candidates for molecular materials that exhibit thermal structural phase transitions. In this study, unsymmetrical ppy-gold(III) (ppy=C-deprotonated-2-phenylpyridine(−)) complexes [AuC5] and [AuC6] coordinated by dithiolene ligands containing tetrathiafulvalene (TTF) skeletons with pentylthio (2-{bis(pentylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) and hexylthio groups (2-{bis(hexylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) were synthesized. Both complexes exhibited a large absorption band at approximately 508 nm, owing to intramolecular ligand-to-ligand charge transfer. One-dimensional columnar structures with head-to-tail molecular arrangements around the metal ions were constructed in the crystals. The flexible alkylthio groups were intercalated into crystalline spaces between dithiolene ligands in the columns. [AuC5] exhibits a simple phase transition at 198 °C between crystalline and isotropic phases irreversibly. The crystalline phase of [AuC6] observed at 25 °C melted at 148 °C. Another crystalline phase grew above 148 °C with a very slow crystallization rate from the liquid phase and was completely transformed into an isotropic phase at 200 °C.  相似文献   

7.
In this study, temperature-sensitive membranes were prepared by phase transition of the mixture of the temperature-sensitive poly(N-isopropylacrylamides) (PNIPAAM) microgels and poly(vinylidene fluoride). The results of Fourier transformed infrared spectrometer, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscope photographs indicate that the PNIPAAM microgels are distributed more in the inner membrane than on the surface. The scanning electron microscope photographs reveal the blend membranes having porous surfaces with nanometer sizes and porous cross-sections with micrometer sizes. The addition of the PNIPAAM microgels is found to improve the porosity, the pore size, water flux, as well as to enhance the hydrophilicity and anti-fouling property of the blend membranes. The blend membrane shows temperature-sensitive permeability and protein rejection with the most dramatic change at around 32 °C which is the lower critical solution temperature of PNIPAAM, when water or bovine serum albumin solution flow through. Specifically, below 32 °C, the blend membrane shows a high protein rejection ratio which decreases with increasing temperature and a low water flux which increases with increasing temperature; above 32 °C, the blend membrane shows a low protein rejection ratio which decreases with increasing temperature and a high water flux which increases with increasing temperature.  相似文献   

8.
Differential scanning microcalorimetry and equilibrium thermohemolysis procedure were used to study the effect of acclimation temperature on thermally induced transitions and thermoresistivity of fish (trout) erythrocyte membranes. Strong correlation has been found between the rates and activation energies of erythrocyte thermohemolysis and acclimation temperature. Transition temperatures of five thermodynamically irreversible and one partially reversible transitions at about 87°C as well as the overall shape of microcalorimetric curves of the erythrocyte ghosts do not vary with acclimation temperature. The results suggest an essential conservation of phospholipid microenvironment of membrane skeleton proteins despite the compensatory response in lipid composition of erythrocyte membrane bilayer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around ?40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at ?91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of ?19.3°C forms upon slow cooling.  相似文献   

10.
The temperatures of phase transitions of the rare earth aluminates have been determined by high temperature X-ray diffractometry. All of the transitions are reversible and occur respectively for Rh ? C at 500°C (LaAlO3), 1330°C (PrAlO3), 1550°C (NdAlO3), and 1950°C (SmAlO3) and for O ? Rh at 770°C (SmAlO3), 1330°C (EuAlO3), and 1700°C (GdAlO3). LnAlO3 perovskites from TbAlO3 up to LuAlO3 are orthorhombic without any phase transition.  相似文献   

11.
Crystal Structures and Phase Transformations of Cesium Trihalogenogermanates CsGeX3(X = Cl, Br, I) The compounds CsGeX3 (X ? Cl, Br, I) have been obtained by reactions of Ge(OH)2 with CsX in aquaeous HX solutions. The thermal behavior has been studied by X-ray diffraction. Raman spectroscopy, and DTA/DSC. The compounds are dimorph. The low temperature modifications L-CsGeX3 show a rhomboedric deformed perovskite type structure. The high temperature phases H-CsGeX3 form the cubic perovskite type structure. The reversible phase transitions are interpreted as a result of position changes of the Ge atoms in the H-forms (Order-Disorder transitions). The transition temperatures increase in the sequence CsGeCl3 (155°C), CsGeBr3 (238°C), CsGeI3 (277°C).  相似文献   

12.
The continuous structural changes of Poly(styrene-b-ethylene-butylene-b-styrene) [SEBS] due to the effect of temperature are hard to evaluate using conventional differential scanning calorimetry (DSC). This paper presents an accurate and simple way to evaluate microstructural and glass transitions of SEBS using modulated differential scanning calorimetry (MDSC). The weak crystalline nature of –(CH2-CH2)–n in the ethylene-butylene (EB) block melted around 36 °C. The premature molecular moment and Tg of the styrene block were at 62 °C and 96 °C, respectively. The interfacial region at high temperature was explained with respect to order-order transition (OOT) at 144 °C and a prominent Order-Disorder Transition (ODT) at around 202 °C. Dynamic mechanical thermal analysis (DMTA) and dynamic mechanical rheological testing (DMRT) measurements also revealed that the Tg of the PS transition were consistent at around 96 °C.  相似文献   

13.
Aluminate sodalite ceramics, (Sr8Al12O24)(CrO4)2) — SACR, have been prepared from solution spray-dried precursors. The spray drying of a mixed aqueous nitrate solution gave an anhydrous powder which was thermally decomposed in air at 1350 °C to give a crystalline SACR powder with a median volume diameter of 4–6 μm. The SACR powder was dry pressed and sintered to >90% density. The yellow SACR powder showed two phase transitions between 10 and 45 °C with a 25 ° intermediate phase region indicative of a low defect concentration in the crystalline structure. A colour change observed in the sintered ceramic (changing to a mixed green/yellow) and a narrowing of the phase transition region (15–40 °C) are discussed. Dielectric measurements were consistent with the presence of two extrinsic ferroelectric transitions at 17 and 35 °C.  相似文献   

14.
Microscopic differential scanning calorimetry and Fourier transform infrared spectrometry (DSC-FTIR) were combined to investigate the thermal response and IR spectra of lipid and protein in the process of a phase transition in porcine stratum corneum (SC) by KBr disc method. The alterations of bands associated with the CH2 stretching vibrations near 2850 and 2920 cnv?1 were used to determine the phase transformation of lipid with temperature. The peaks of amide I and II of protein were used to investigate the thermal conversion of protein. A reheating process was performed. The results indicate that the bands of lipid near 2900 cm?1 shifted to greater wavenumber with increased temperature, but reversibly. The band due to deformation mode of the lipid altered from shoulder to smooth with increased temperature. During heating, α-keratin of the protein transformed gradually to p-keratin, but irreversibly. Thermal transitions that occurred near 78 °C and 115 °C for the sample on first heating were associated with phase transition of the lipid-protein complex and the protein in porcine SC, respectively. After reheating, this phase transitional temperature of the lipid-protein complex in porcine SC decreased from 78 to 68 °C, and the transition of protein near 115 °C almost disappeared. This behaviour indicates that porcine SC after heating might alter its structure. The thermally altered proportion of lipid was 43.98% and the thermally induced proportion of protein was 41.48% during the first heating process, but the restoration of lipid during the cycle of heating, cooling and reheating was 37.64%. The variation is attributed to the denaturation of protein to alter the structure of lipid-protein complex after first heating. This technique was simple, precise and reproducible for simple determination of stratum corneum or biological samples in a brief period.  相似文献   

15.
Low molecular weight hydroxy terminated polyethylene (HTPE) containing on average an ethyl group every 16–18 carbon atoms, and a hydroxy functionality of 2.6, has been used to prepare polyurethane copolymers and block copolymers which have good solvent resistance. The polymers show somewhat complicated thermal behavior, including Tg's at around −40°C due to the HTPE and diffuse endotherms between 40 and 60°C. The simple copolymers, containing only the polyol and a diisocyanate, show infrared evidence for two phases in the case where CHDI (trans-1,4-diisocyanatocyclohexane) was used, and poorer phase separation where other diisocyanates were used. Dynamic mechanical spectra show very broad tan delta transitions for the copolymers in the range of -9 to −23°C. All the polymers exhibit another transition in the G” curve above room temperature. SAXS reveals a microphase separated structure at 30°C for the simple copolymers which increases in spacing, then disappears in the 60–70°C range. With cooling, the microphase separated structure reappears readily for the CHDI-based copolymer, while its reappearance shows a hysteresis resulting from rate effects for the other copolymers.  相似文献   

16.
In this paper it is shown that in many cases enthalpy determinations can be carried out with a precision <1%. The influences of various sample and instrumental properties are described. The enthalpies of 24 compounds with 30 phase changes (polymorphic transitions or melting points) were redetermined. Twelve of the compounds with 15 transitions in the temperature range 0?670°C are selected and recommended for calorimetric DSC calibration. The linearization of the calibration curve as stated by the manufacturer of the instrument employed was fully confirmed.  相似文献   

17.
NaP zeolites samples with different morphologies were successfully synthesized and their thermal behaviors were fully characterized by in situ HT-XRD, IR spectrum, and TG-DSC techniques. It was found that the cubic zeolite NaP phase underwent the same phase transitions, despite their different morphologies. During the whole heating process, they first underwent a minor phase transition into the tetragonal phase at 200 °C. Then they were gradually converted into the phillipsite phase between 400 and 700 °C. Finally, a very stable NaAlSiO4 nepheline phase formed when the calcination temperature reached 800 °C, which would be kept even after the sample was cooled to room temperature. Although samples with different morphologies had similar phase transitions, they did have different thermal stability as proved by the TG-DSC study.  相似文献   

18.
Formation and stability temperatures were determined for the three polymorphs of copper pyrovanadate. The low-temperature β phase is formed at 500°C and is stable from room temperature to 610°C. The intermediate phase is stable within 610–705°C. The high-temperature γ phase is stable within 710–780°C. The rates of γ → α and α → β phase transitions upon cooling differ considerably. α-Cu2V2O7 detected at room temperature upon cooling of a molten sample is metastable.  相似文献   

19.
Time courses of state I-state II transitions were measured in the thermophilic blue-green alga (Cyanobacterium), Synechococcus lividus, that was grown at 55°C. The rate of the state I–II transition using light II illumination was the same as that in the dark, and the dark state was identified to be state II. Therefore, light regulation attained by state transitions is produced by the state II–I transition induced by system I light. The redox level of plastoquinone did not affect this dark state II. Arrhenius plots of the state transitions showed a break point around 43°C that corresponded to the phase transition temperature of this alga. Since both the state I–II and II–I transitions were very much temperature-independent, we could keep the alga in either state for a long time at a “low” temperature such as room temperature. Activities of both photosystems I and II in states I and II were also measured. After a state II–I transition, the system II activity increased about 16% and at the same time, svstem I activity decreased about 30%.  相似文献   

20.
Abstract

Polymerization of the title compounds in methylene di-chloride with PF, catalyst have shown that the rate of polymer formation drops sharply with temperature and the polymerization ceases entirely around -60 to -70°C. Ex-periments carried out with the exo-2-Me isomer have shown that at -30°C a limiting conversion of approx 40% is attained and simultaneously the molecular weight and the molecular weight distribution level off. At -50°C the same limiting conversion level is reached; however, the molecular weight level is higher and a study of changes in molecular weight distribution with time indicates that at this tempera-ture a greater proportion of chains remain active throughout the polymerization. Even at -30°C, however, experiments with changing conditions, especially the temperature, during the runs have demonstrated that the systems are not “dead” after the limiting conversion has been reached. Polymeriza-tion of the endo-2-Me isomer at -50°C has shown that in the time interval studied the limiting viscosity number increases essentially linearly with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号