首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

2.
通过高温煅烧和油浴的方法构筑二维/三维(2D/3D) ZnIn2S4/TiO2异质结, 应用于光催化降解罗丹明B (RhB)和四环素(TC), 来研究异质结的构筑对TiO2可见光响应范围和光生载流子对分离效率的影响. 结果表明, TiO2维持了MOFs的形貌, 显示窄的可见光响应范围和高的光生电荷复合率, 与ZnIn2S4纳米片复合后, TiO2的比表面积增大, 光催化活性位点增多. 带隙宽度也由TiO2的3.23 eV减小到ZnIn2S4/TiO2-II的2.52 eV, 从而获得了更宽的可见光响应范围. 能带结构表明ZnIn2S4/TiO2是type II型异质结, 提高了光生载流子对的分离与转移效率. 在可见光照射下, ZnIn2S4/TiO2-II显示了最高的RhB光催化降解效率(93%), 分别是TiO2和ZnIn2S4的18和2倍. 同时, ZnIn2S4/TiO2-II也显示出比TiO2和ZnIn2S4更高的TC降解效率(90%). 循环实验表明ZnIn2S4/TiO2-II能保持良好的稳定性, 经5次循环实验后仍能降解83%的RhB. 研究表明基于MOFs衍生的TiO2构筑2D/3D ZnIn2S4/TiO2异质结是提高TiO2光催化性能的一条有效途径.  相似文献   

3.
随着社会经济的高速发展,能源的短缺和生态的破坏引起了人们的关注。近年来,寻找合适的解决方案已成为关注的重点。作为一种绿色环保技术,光催化由于其高效、低成本等优点而成为能源和环境问题的研究热点。在许多光催化材料中,三元硫化物硫化铟锌(ZnIn2S4)由于具有可见光响应特性、简单的制备方法和出色的稳定性而表现出巨大的潜力。然而,较高的载流子复合率限制了其光催化性能。近年来,许多研究报道了改性ZnIn2S4以提高其光催化性能,在此,本文详细介绍了各种改性研究,包括ZnIn2S4单体的合成、半导体化合物的结构、贵金属沉积、碳元素改性、离子掺杂。然后,系统完整地总结了ZnIn2S4在光催化、降解有机污染物、去除六价铬、还原CO2和有机合成等方面表现出的光催化特性和机理。最后,对ZnIn2S4的发展前景提出了展望,以期ZnIn2S4光催化剂得到更广泛和深入的研究,尽快在实际生产中得到应用。  相似文献   

4.
首先采用溶剂热法和高温煅烧法制备1D TiO2纳米带,其次利用溶剂热法将1D TiO2纳米带均匀地穿插到片层结构组装而成的3D ZnIn2S4微球中,所形成的异质结构能有效抑制光生电子-空穴的复合。二元ZnIn2S4微球/TiO2纳米带复合光催化剂在高浓度染料罗丹明B(RhB)的光降解和Cr(VI)的光还原实验中表现出优异的性能。在模拟太阳光照射下,ZnIn2S4/TiO2纳米带光催化降解RhB和还原Cr(VI)的效率相较于纯TiO2颗粒(10%,22%)、TiO2纳米带(45%,40%)、ZnIn2S4(62%,65%)、ZnIn2S4/TiO2颗粒(90%,91%)分别提高至100%和100%。最后,通过紫外-可见...  相似文献   

5.
纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。  相似文献   

6.
以钼酸铵和二氰二胺为原料,通过高温固相法制备了Mo2C。以合成的Mo2C为原料,通过原位法合成了Mo2C/ZnIn2S4复合光催化材料。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、紫外可见漫反射(UVvis)、开尔文探针(KP)等对材料的组成、结构和性能进行了表征。结果表明,ZnIn2S4在Mo2C颗粒表面原位生长并形成异质结。Mo2C/ZnIn2S4复合材料析氢速率可达到1.33 mmol/(g·h),是纯ZnIn2S4析氢速率的5.1倍。光催化机理分析认为,Mo2C作为助催化剂具有类金属特性,较高的导电性能和高的表面功函,与ZnIn2S4形成Mo2C/ZnIn2S...  相似文献   

7.
工业化固氮合成氨主要采用Haber-Bosch法.然而,该工艺条件苛刻,需要氮气与氢气在高温高压和使用催化剂的条件下反应,耗费大量能源,同时产生温室气体.与Haber-Bosch法不同,光催化固氮不需要使用氢气,而是利用清洁的太阳能和水直接提供固氮反应所需的还原电子和质子,反应耗能低且绿色无污染,是一种理想的固氮方法.然而,目前光催化固氮合成氨受限于光催化剂载流子分离效率低、氮气吸附和活化难,总体固氮效率仍然很低.大量研究证明,构建梯型异质结是一种改善光催化活性的有效手段,这是因为梯型异质结体系不仅有效分离光生载流子,而且保留了光生空穴和电子的强氧化还原能力.另外,表面缺陷不仅可以充当吸附位点,有效调控表面N2分子的吸附特性,还可以起到活化N2分子的作用.本文设计了富含空位的In2O3/ZnIn2S4梯型异质结,系统考察了复合体系中组分配比对晶型结构、微结构和光学吸收等的影响,并通过XPS谱研究了In2O3和ZnIn2S4之间存在强的相互作用,这为光生载流子的高效分离奠定了基础.同时,结合XPS、Raman和EPR测试揭示了材料中表面空位的成功构筑.在此基础上,深入研究了In2O3/ZnIn2S4梯型异质结在室温常压下光催化固氮合成氨的活性.研究结果表明,所有的梯型异质结均展现出明显的光催化固氮活性,其中50 wt%In2O3/ZnIn2S4梯型体系具有最高的光催化固氮活性,自然光照射2 h产生的氨气浓度达到18.1±0.77 mg·L-1,分别是In2O3和ZnIn2S4的21.0和2.72倍.并且该复合体系具有较高的光催化稳定性,在连续循环使用6次时,产生氨气浓度仍然可达到16.3±0.86 mg·L-1.荧光光谱测试、光电化学测试和表面光电压测试证明了电荷的有效分离和转移.综上,构建In2O3/ZnIn2S4梯型体系后,所制备的In2O3/ZnIn2S4活性得到增强,这主要归因于空位对氮气的吸附和活化作用以及梯型异质结中载流子的高效分离机制.另外,研究表明·CO2-物种是光催化固氮合成氨的主要活性物种.  相似文献   

8.
氢的能量密度高,易于储存和运输,因此,人工制氢已成为解决能源危机和环境污染问题的有效途径之一,开发可持续、温和、高效的制氢方法受到了广泛关注.在众多的制氢方法中,光催化水分解制氢已发展成为一种理想的制氢途径.然而受制于光催化剂的光响应范围窄、电荷分离效率低和活性位点少等问题,目前的光催化分解水制氢效率仍然处于一个较低水平,严重限制了其实际应用,因此,探究高效的光催化分解水材料的新体系与新机制成为解决上述问题的核心任务.ZnIn2S4是一种典型的具有可见光活性和化学稳定性的半导体,但由于光生电子的快速复合和严重的光腐蚀限制了其在光催化中的实际应用.本文采用界面工程,将ZnIn2S4,g-C3N4和Ti3C2 MXene材料耦合,设计构建了具有双异质结的2D/2D/2D三明治结构ZnIn2S4/g-C3N4/Ti3  相似文献   

9.
本文采用一步溶剂热法制备了Sn2+/Sn4+共掺杂的ZnIn2S4/碳布柔性光催化剂(CC/ZIS-Sn),二维片状ZIS-Sn均匀地排列在碳布表面。通过降解盐酸四环素(TCH)溶液来评价所制备样品的光催化活性。结果表明,CC/ZIS-Sn0.09复合光催化剂具有高效的光催化活性,40 min对TCH溶液(50 mL,20 mg/L)的降解率高达93.3%。适量的Sn掺杂和碳布协同作用能够调整电子结构,缩小光捕获带隙,增强ZIS光生载流子的分离和转移效率。自由基捕获实验证明空穴是光催化降解过程中的主要活性物质。此外,CC/ZIS-Sn光催化剂还具有良好的可回收性和稳定性,循环测试4次后,对TCH溶液的去除率仍达83.1%。  相似文献   

10.
笪祖林  赵勇  施伟东 《应用化学》2018,35(8):946-955
发展和设计高效、廉价和稳定的光催化剂用于抗生素污染物降解仍然存在巨大的挑战。 本文通过一种便捷的水热方法制备了Bi4V2O11/石墨烯复合材料并用于可见光下抗生素污染物光催化降解。 通过自由基追踪实验,确认了光催化降解过程中活性物质为h+和·OH基团。 根据实验结果,提出了相应的反应机理。 石墨烯的引入可以有效地促进光生电子-空穴对的分离,从而增强光催化活性。 该复合催化剂展现出良好的活性和稳定性。 该方法以石墨烯为载体制备了光催化降解材料,为高性能光催化剂的制备提供了参考。  相似文献   

11.
采用水热方法制备了ZnIn2S4/g-C3N4复合材料, 并通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 紫外-可见漫反射光谱(UV-Vis DRS)、 透射电子显微镜(TEM)和荧光光谱(PL)等手段对其结构和性能进行表征. 结果表明, 当ZnIn2S4的负载量为20%(质量分数)时, 复合材料表现出最佳的光催化制氢性能, 制氢速率可达到637.08 μmol·g-1·h-1, 分别为纯ZnIn2S4和纯g-C3N4的4倍和37倍. 其原因在于ZnIn2S4和g-C3N4之间具有紧密的异质结结构, 两者有效的结合改善了组分的能带匹配和界面电荷转移, 从而大幅增强了载流子的分离和迁移, 进而提高光催化的性能.  相似文献   

12.
首先,借助碳量子点(CQDs)的上转换光致发光(UCPL)特性对ZnIn2S4进行了表面改性,再结合离子交换法制备了复合材料AgIn5S8/CQDs/ZnIn2S4。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外可见漫反射吸收光谱(UV-Vis DRS)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸附-脱附、光致发光(PL)和电化学阻抗(EIS)等测试手段对复合材料的组成、结构、形貌以及表面物理化学性质等进行了表征。结果表明,该复合材料中不同组分间的协同作用导致其呈现宽光谱响应(250~800 nm)。与对比体系相比,复合材料AgIn5S8/CQDs/ZnIn2S4表现出明显增强的光电流密度,更小的电荷转移阻抗,较长的光生载流子寿命。以甲基橙为模型分子,在不同光源作用下进行的光催化活性研究结果显示,AgIn5S8...  相似文献   

13.
氢气是一种清洁能源,利用太阳能进行光催化分解水产氢,因为节能和环保,吸引了国内外学者的广泛关注.但是,半导体光催化材料普遍存在可见光吸收范围窄和光生载流子易复合等问题,导致光催化效率不高.半导体耦合是拓展光吸收范围,并促进光生载流子空间分离的有效策略之一.能带相互交错的两种半导体复合,可以形成传统的Ⅱ型异质结,但是这种耦合方式削弱了光生电荷的氧化还原能力.相对传统Ⅱ型异质结光催化材料的不足,余家国教授提出了S型异质结的概念,它通常由两种n型半导体光催化剂组成,其中能带位置较高的为还原型光催化剂(RP),能带位置较低的是氧化型光催化剂(OP).形成S型异质结的关键是接触界面处存在由RP指向OP的内电场.受内建电场的驱动,S型异质结界面电子和空穴的流向与传统Ⅱ型光催化剂完全不同.由于保留了光生电子和空穴具有较强的还原和氧化能力,S型异质结在热力学上更有利于光催化氧化与还原反应.本文以硫代乙酰胺为硫源,采用低温溶剂热法(乙二醇中110℃反应2 h),在氧化型光催化剂(1D的WO3纳米棒)表面原位生长还原型光催化剂(2D的ZnIn2S4  相似文献   

14.
杨辉  张金锋  代凯 《催化学报》2022,(2):255-264
近年来,随着人口的增加,汽车尾气的排放和化石燃料的燃烧加剧,大气中的二氧化碳含量持续增加.光催化技术是根本上解决上述问题的有效方法之一.但目前光催化技术存在催化效率低、载流子易复合等缺点.二维SnNb2O6纳米片能够有效缩短光生电子从材料内部到材料表面的传输距离,减少电子和空穴在光催化剂中的复合.但SnNb2O6的带隙较宽,导致可见光吸收率较低,而且在单一的半导体材料中,强氧化还原能力和高可见光吸收能力难以共存.CdSexS1-x-DETA是一种直接带隙半导体,在可见光范围内可调节带隙.为了提高SnNb2O6的光催化活性和光吸收范围,在两种半导体材料之间设计异质结是一种有效的方法.其中,梯型(S型)异质结可以有效促进光生电子-空穴对的分离和转移,并保持强大的氧化和还原能力,在有效降低电子空穴对的复合速率的同时,增强光催化剂的活性和稳定性.本文通过溶剂热法设计制备了S型Cd Se0.8S0.2-DETA/SnNb2O6异质结构材料,利用X射线衍射(XRD)可以观察到除Cd Se0.8S0.2-DETA和SnNb2O6物相外,没有其它组分.采用扫描电子显微镜和透射电子显微镜(TEM)进一步观察了光催化剂的结构和形貌,结果表明,一维的Cd Se0.8S0.2-DETA生长在二维SnNb2O6纳米片上;能谱分析也证实该催化剂仅包含Cd Se0.8S0.2-DETA和SnNb2O6中的元素,无其它杂质;TEM的晶格条纹进一步表明两种物质是复合在一起的,不是机械的混合物.紫外可见光漫反射光谱(UV-Vis)结果表明,Cd Se0.8S0.2-DETA和SnNb2O6的吸收带边分别为1.71和2.52 e V.随着复合样品中Cd Se0.8S0.2-DETA含量的增加,其可见光吸收范围增大.光电流和阻抗响应图谱表明,Cd Se0.8S0.2-DETA/SnNb2O6复合材料具有较高的光响应和较低的阻抗,有利于电子空穴的运输.光催化CO2还原测试结果表明,30%Cd Se0.8S0.2-DETA/SnNb2O6催化CO2还原生成CO的产率(17.31μmol·g-1·h-1)最高,分别是SnNb2O6(6.2μmol·g-1·h-1)和Cd Se0.8S0.2-DETA(3.6μmol·g-1·h-1)的2.8倍和4.8倍.XRD测试结果表明,反应后光催化剂的与新鲜光催化剂的衍射峰基本相符.催化剂经过4次循环测试后催化性能基本稳定,说明光催化剂具有较好的稳定性.XPS表征结果显示,相对于纯的Cd Se0.8S0.2-DETA与SnNb2O6,复合材料中Cd,Se与S的结合能降低,周围的电子密度增大,而复合材料中Sn,Nb与O的结合能增加,周围的电子密度降低,这表明电子从SnNb2O6到Cd Se0.8S0.2-DETA的转移路径遵循S型异质结机理.综上,本文提供了一种简单的制备S型光催化方法,可以优化能带结构以促进光生载流子的分离,从而实现高效率的二氧化碳还原.  相似文献   

15.
以三聚氰胺固体粉末为原料,采用一步热聚合法合成了g-C3N4材料;在此基础上利用酸处理氧化法合成氧掺杂氮化碳O-g-C3N4材料;利用溶剂热法合成Cu/O-g-C3N4复合材料。对所制备材料进行了FTIR、XRD、XPS、SEM等表征,并作为光催化剂用于光催化降解实验,以罗丹明B作为目标污染物,初步探讨了降解动力学过程和降解机理。实验结果表明,此方法合成的复合材料反应活性位点丰富且分散均匀,表现出较强的催化和可循环性能。其中其中掺杂硫酸铜质量比约为6%的Cu/O-g-C3N4(CuCN-Ⅱ)复合材料光催化降解性能最佳,在光照180 min内对罗丹明B的降解率可以达到98%以上,同时复合材料具有良好的稳定性。  相似文献   

16.
采用水热法制备了ZnIn2S4固溶体, 并通过用盐酸对其进行后处理获得了系列ZnmIn2Sm+3(m≥2, 整数)固溶体. 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线光电子能谱(XPS)、 紫外-可见漫反射光谱(UV-Vis DRS)、 荧光光谱(PL)和电化学测试对催化剂的组成、 结构和性能进行了表征. 研究了系列固溶体可见光光催化制氢活性. 结果表明, ZnIn2S4固溶体经0.5 mol/L HCl处理后能转化为Zn2In2S5固溶体, 其制氢活性为ZnIn2S4固溶体的2.2倍, 并且具有良好的稳定性.  相似文献   

17.
光催化氧化是一种应用前景良好的环境治理技术.与絮凝、物理吸附和化学氧化等常见的方法相比,光催化氧化具有环境友好、氧化完全、方便和廉价等优势.特别是可见光光催化氧化,可利用太阳能中占比最高的可见光,在应用中更具优势.因而,探索可见光响应性能优异的光催化剂一直是光催化氧化领域的一个重要研究内容.硒化铋(Bi2Se3)是一种带隙(带隙宽度在0.3~1.3 e V)非常窄的半导体,能吸收全部波长范围的可见光和近红外光.此外,Bi2Se3还具有独特的金属表面态,其表面具有良好的导电性.这些特性使其在可见光光催化氧化领域具有很大的应用潜力.然而,由于Bi2Se3价带位置高,氧化能力很弱,其价带上的空穴在光催化反应中难以被消耗,导致空穴大量累积,并迅速与光生电子复合,大幅降低了Bi2Se3的光催化性能.因此,一直以来,Bi2Se3很少被用于光催化反应.如何充分利用Bi2Se3的光响应优势,制备出性能优异的光催化剂,仍是具有挑战性和吸引力的研究方向.本文采用预先制备的Bi2O3/g-C3N4复合物作为前驱体,通过原位转化的方法,将前驱体置于热的Se蒸汽中,使前驱体上的Bi2O3与Se蒸汽反应,完全转化为Bi2Se3纳米颗粒,从而制得Bi2Se3/g-C3N4复合光催化剂(Bi2Se3含量约为4 wt%).透射电镜结果表明,所形成的Bi2Se3纳米颗粒较均匀地分布在g-C3N4表面.表面功函数分析发现,Bi2Se3与g-C3N4结合后,它们的费米能级分别由原来的-0.55和-0.18 e V变为平衡时的-0.22 e V,可形成指向g-C3N4的内建电场,有利于形成梯型(S型)异质结.在此基础上,能级位移、荧光分析、结构计算和反应自由基测试等结果表明,Bi2Se3和g-C3N4之间形成了S型异质结.在可见光光催化降解苯酚的实验中,所制备的Bi2Se3/g-C3N4复合物的光催化活性明显优于单一的Bi2Se3和g-C3N4.结合比表面、孔结构、光吸收和荧光等对比分析,认为Bi2Se3/g-C3N4的这种S型异质结构在其光催化活性增强中起到了关键作用.在光照条件下,其g-C3N4导带中光生电子向Bi2Se3的价带迁移,并与光生空穴复合,从而使Bi2Se3导带上可保留更多的高活性光生电子参与光催化反应,由此Bi2Se3/g-C3N4的光催化活性增强.循环性能测试和光还原实验结果表明,所制备的Bi2Se3/g-C3N4复合光催化剂具有良好的稳定性.本文工作为高可见光吸收的光催化剂制备和性能增强提供了新途径和新视野.  相似文献   

18.
过氧化氢作为一种绿色氧化剂,被广泛应用于食品工业、有机合成、医疗消毒和污水处理等领域.目前,大多数用于工业生产的过氧化氢是通过蒽醌法制备.传统的蒽醌法能耗高、有机副产物多、环境污染严重,因此,利用清洁的太阳能进行半导体光催化生产过氧化氢备受关注.其中,ZnO半导体因其高稳定性、无毒性、良好的生物相容性和合适的导带位置而成为一种潜在的过氧化氢生产材料.然而,单一的ZnO在光催化生产过氧化氢中面临着许多问题,如载流子分离效率低、可见光吸收弱等,从而导致其较低的光催化性能.因此,多种策略被用于解决上述问题,如掺杂非贵金属元素、晶面调控和异质结构构建等.在这些改性策略中,异质结构建被认为是提高光催化性能最有效的方法之一,特别是S型异质结因其较好的氧化还原能力和电子转移特性而备受关注.S型异质结通常由一个氧化型光催化剂和一个还原型光催化剂组成,在两者的接触界面上形成内建电场,促使无用的载流子复合,从而保留更多具有强氧化还原能力的空穴和电子,以此提高异质结光催化性能.ZnIn2S4具有合适的带隙和高导带位置,可以作为还原型光催化剂与ZnO构建S型异质结,...  相似文献   

19.
张慧琴  郭月滨  陈艳梅  张燕辉 《化学通报》2023,86(11):1313-1318
还原氧化石墨烯-TiO2(rGO-TiO2)复合材料被合成以来,其应用不断被拓展。以rGO-TiO2作为光催化剂时,发现rGO可以作为电子储存体和光敏剂,从而提高TiO2的光催化活性。本文从rGO-TiO2的设计出发,综述其在光催化过程中rGO的作用以及制备复合材料中氧化石墨烯(GO)的作用。期望为研究者通过设计高效光催化剂从而减少环境污染和改变能源使用结构提供参考。  相似文献   

20.
胡长朝  余俊蓉  张瑞 《合成化学》2022,30(6):451-458
通过溶剂热法制备了一种可磁回收CoFe2O4/RGO/BiOBr(CRB)三元复合光催化剂。利用TEM、XRD表征了该光催化剂的微观形貌和晶体结构。在可见光驱动下降解亚甲基蓝(MB)和诺氟沙星(NFX),探讨了光催化剂的光催化活性与稳定性,结果表明,制备得到的CRB复合光催化剂具有最佳的光催化性能,对MB(20 mg/L)的降解率在30 min能达到82.2%,光照60 min能降解81.7%的NFX(5 mg/L)。利用外加磁场将CRB复合光催化剂分离后进行了五次循环实验,该复合光催化剂对MB和NFX的降解率仍能分别达到80.2%和78.8%。结合UV-vis DRS、PL和EIS,研究了其光催化性能变化的原因。最后基于能带结构理论公式,推导出了磁性CRB体系的光催化降解机理。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号