首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn.  相似文献   

2.
The kinetics of oxidation of some aldoses, amino sugars and methylated sugars by osmium (VIII) have been studied spectrophotometrically in alkaline medium. The reactions are first‐order with respect to both [sugar]≤9.0×10−3 mol dm−3 and [OH]≤10.0×10−2 mol dm−3 but tends toward zero order with respect to each at higher concentration. Activation parameters of the reactions have been calculated and plausible reaction mechanisms have been suggested. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 477–483, 1999  相似文献   

3.
4.
The kinetics and mechanism of reduction of aqueous toluidine blue (TB+) by phenyl hydrazine (Pz), which exhibits nonlinear behavior, is studied spectrophotometrically at 630 nm. Typical kinetic curves exhibited autocatalytic characteristics. The role of H+ as an autocatalyst is established. Rate constants for the uncatalyzed and acid catalyzed reactions are determined. The forward rate constants for the uncatalyzed and acid catalyzed reactions were 1.4 × 10−2 M−1 s−1 and 60 M−1 s−1. Reaction products are toluidine white, phenol, and an azo dye. From the stoichiometric ratios, the major reaction is Pz + 2 TB+ + H2O = PhOH + 2 TBH + 2 H+ + N2. The rate expression and a detailed 12‐step reaction mechanism supported by simulations are proposed. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 83–88, 1999  相似文献   

5.
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH and H2O activity in close proximity to a CO2-converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.  相似文献   

6.
A laser-flash photolysis/UV absorption technique has been used to study the temperature dependence (from T = 300 - 470 K) of the self-reaction kinetics of representative primary secondary and tertiary β-hydroxyperoxy radicals The following Arrhenius expressions were derived for the rate coefficients of reactions (1)-(3) (in cm3 molecule −1s−1) and for the product branching ratios of reactions (1) and (2) as a function of temperature (all errors 1σ) The calculated rate coefficients for reactions (1)-(3) at 298 K are therefore (in 10−13 cm3molecule −1s −1 23 ± 2, 6.7 ± 1.3, and 0.040 ± 0.012, respectively which compare well with the values measured elsewhere at this temperature using a similar technique. The product branching ratios and the Arrhenius parameters are compared with those for other substituted and unsubstituted peroxy radical self reactions. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 323–331, 1997  相似文献   

7.
The reactions of Cl2O with the cluster ions X(D2O)n=0–4 (X = O, OD, O2, DO2, and O3) were studied in a He buffer gas at temperatures within the range 171–298 K and pressures of 0.27–0.51 Torr, using a flow-tube apparatus. All ions were found to react with Cl2O at rates slower than predicted by the collision rate and the charge center was transferred from X to Cl or ClO. The primary product ions Cl(DOCl) and ClO(DOCl) were observed to react further to produce the ions Cl3O and Cl3O2. The rate constants for the observed reactions are reported and the role that thermodynamics plays in determining possible reaction channels is discussed.  相似文献   

8.
Rate coefficients for reactions between Cl radicals and four ketones were determined at 294 ± 1 K with a relative rate method using a laser photolysis technique. The experiments were conducted in synthetic air in a flow system at atmospheric pressure. A mixture of Cl2/ClONO2 was photolyzed and the formation of NO3 through the reaction Cl + ClONO2 → Cl2 + NO3 was measured with and without ketones in the reaction mixture. The NO3 radical concentration was measured by optical absorption using a diode laser as the light source. The rate coefficients for the Cl-ketone reactions could then be evaluated. The following rate coefficients were obtained (in units of cm3 molecule−1 s−1): cyclohexanone (7.00 ± 1.15) × 10−11; cyclopentanone (4.76 ± 0.33) × 10−11; acetone (1.69 ± 0.32) × 10−12; and 2,3-butanedione (7.62 ± 1.66) × 10−13. The accuracy of the method employed was tested by using the well-studied reaction between Cl and methane and a rate coefficient of (9.37 ± 1.04) × 10−14 cm3 molecule−1 s−1 was obtained, which is in good agreement with previous work. The errors are at the 95% confidence level. The results in this work indicate that a carbonyl group in a ketone lowers the reactivity towards α-hydrogen abstraction by Cl radicals, compared to the corresponding Cl-alkane reactions. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 195–201, 1997.  相似文献   

9.
Late transition metal-bonded atomic oxygen radicals (LTM−O⋅) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM−O⋅-mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM−O⋅ radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3O10 and FeV5O15 featuring with Fe−O⋅ radicals to abstract a hydrogen atom from C2−C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10−14 to 10−16 cm3 molecule−1 s−1, which are four orders of magnitude slower than the values of counterpart ScV3O10 and ScV5O15 clusters bearing Sc−O⋅ radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe−O⋅. This study not only quantitatively characterizes the elementary reactions of LTM−O⋅ radicals with alkanes, but also provides new insights into structure-activity relationship of M−O⋅ radicals.  相似文献   

10.
Upper limits of 4×10−20 and 7×10−20 cm3 molecule−1 s−1 were established for the gas-phase reactions of H2O2 with O3 and NO, respectively. These reactions are too slow to explain features observed in the atmospheric vertical profile of H2O2. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 707–709, 1998  相似文献   

11.
Indoor semivolatile organic compounds (SVOCs) originate from indoor and outdoor sources. These SVOCs partition among different phases and available surfaces, which increases their residence time indoors to several years. SVOCs may also react with indoor oxidants, such as hydroxyl radicals (OH), nitrate radicals (NO3), and ozone. In the present study, the second‐order reaction rate constants of 72 SVOCs in indoor air (gas and particle phases) at room temperature and ambient air pressure were retrieved from the literature. The pseudo–first‐order reaction rate constants of these SVOCs were calculated for the indoor concentration ranges of OH, NO3, and ozone. Then, the extent to which the chemical reaction had a meaningful impact on the removal of SVOCs from the indoor environment was quantitatively analyzed. The orders of magnitude of the second‐order rate constant ranged between 10−15 and 10−10 cm3/(molecule·s) for OH/SVOC reactions, 10−17 and 10−12 cm3/(molecule·s) for NO3/SVOC reactions, and 10−20 and 10−16 cm3/(molecule·s) for ozone/SVOC reactions in indoor air. Assuming that the highest indoor reactant concentrations were 1.8 × 106 molecules/cm3 (7.3 × 10−5 ppb) for OH, 2.5 × 108 molecules/cm3 (10−2 ppb) for NO3, and 1.4 × 1012 molecules/cm3 (58 ppb) for ozone, the highest pseudo–first‐order rate constants in the gas phase for the studied reactions of OH/SVOCs (n = 72), NO3/SVOCs (n = 3), and ozone/SVOCs (n = 14) reached 1.5 h−1 (OH/benzo[a]pyrene), 0.41 h−1 (NO3/acenaphthene), and 1.0 h−1 (ozone/aldrin and ozone/heptachlor), respectively. The pseudo–first‐order rate constants in the particle phase for the studied reactions of OH/SVOCs (n = 13), NO3/SVOCs (n = 6), and ozone/SVOCs (n = 14) at the high indoor reactant concentrations reached 0.09 h−1 (OH/DEHP), 5.8 h−1 (NO3/pyrene), and 11 h−1 (ozone/benzo[a ]pyrene), respectively. These results indicate that the chemical reactions of some SVOCs in indoor air have a meaningful impact compared to the air exchange rate, which should be considered in future studies on indoor air quality modeling.  相似文献   

12.
The kinetics for the esterification of cycloaliphatic epoxy resin with acrylic acid was investigated in the presence of two different catalysts, namely triethylamine (TEA) and triphenylphosphine (TPP). The reactions were carried out at four different temperatures in the range of 80–110°C and 60–90°C for TPP and TEA catalysts, respectively. The power law kinetics model was adopted for analyzing experimental data to determine reaction equations. Both differential and integral methods were applied to determine the reaction orders and reaction constants. The overall reaction order for the reaction systems was found to be 2 using both differential and integral methods. According to the differential method, the reaction orders with respect to epoxide and carboxylic acid groups were calculated to be 1.2 and 0.8, respectively. The reactions could be considered as first‐order reactions with respect to each group based on integral method analysis. The activation energies and frequency factors of these esterification reactions were found to be 77.2 kJ·mol−1 and 1.72E+10 L·mol−1·min−1 in the presence of TPP and 65.3 kJ·mol−1 and 1.44E+7 L·mol−1·min−1 in the presence of TEA. The thermodynamic parameters of reaction in the presence of TPP and TEA were calculated. The results confirmed that both reactions were spontaneous and irreversible. It was found that the reaction in the presence of TEA produced a highly ordered activated complex.  相似文献   

13.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Palladium allyl, cinnamyl, and indenyl complexes with the ylide-substituted phosphines Cy3P+−C(R)PCy2 (with R=Me ( L1 ) or Ph ( L2 )) and Cy3P+−C(Me)PtBu2 ( L3 ) were prepared and applied as defined precatalysts in C−N coupling reactions. The complexes are highly active in the amination of 4-chlorotoluene with a series of different amines. Higher yields were observed with the precatalysts in comparison to the in situ generated catalysts. Changes in the ligand structures allowed for improved selectivities by shutting down β-hydride elimination or diarylation reactions. Particularly, the complexes based on L2 (joYPhos) revealed to be universal precatalysts for various amines and aryl halides. Full conversions to the desired products are reached mostly within 1 h reaction time at room temperature, thus making L2 to one of the most efficient ligands in C−N coupling reactions. The applicability of the catalysts was demonstrated for aryl chlorides, bromides and iodides together with primary and secondary aryl and alkyl amines, including gram-scale applications also with low catalyst loadings of down to 0.05 mol %. Kinetic studies further demonstrated the outstanding activity of the precatalysts with TOF over 10.000 h−1.  相似文献   

15.
Using relative rate methods, rate constants for the gas‐phase reactions of OH radicals and Cl atoms with di‐n‐propyl ether, di‐n‐propyl ether‐d14, di‐n‐butyl ether and di‐n‐butyl ether‐d18 have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in cm3 molecule−1 s−1 units) were: OH radical reactions, di‐n‐propyl ether, (2.18 ± 0.17) × 10−11; di‐n‐propyl ether‐d14, (1.13 ± 0.06) × 10−11; di‐n‐butyl ether, (3.30 ± 0.25) × 10−11; and di‐n‐butyl ether‐d18, (1.49 ± 0.12) × 10−11; Cl atom reactions, di‐n‐propyl ether, (3.83 ± 0.05) × 10−10; di‐n‐propyl ether‐d14, (2.84 ± 0.31) × 10−10; di‐n‐butyl ether, (5.15 ± 0.05) × 10−10; and di‐n‐butyl ether‐d18, (4.03 ± 0.06) × 10−10. The rate constants for the di‐n‐propyl ether and di‐n‐butyl ether reactions are in agreement with literature data, and the deuterium isotope effects are consistent with H‐atom abstraction being the rate‐determining steps for both the OH radical and Cl atom reactions. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 425–431, 1999  相似文献   

16.
One-electron transfer equilibria between seven phenothiazines were characterized by pulse radiolysis, producing radical-cations via oxidation by Br2·− or (SCN)2·− radicals. The reduction potentials of the phenothiazine radicals were determined by cyclic voltammetry. As an independent check, the redox equilibrium between one phenothiazine and the redox indicator ABTS was investigated. The data establish phenothiazines as useful indicators for radical redox properties. However, there are potential problems of aggregation, additional reactions with Br/Br2·− and reactivity of the radicals towards buffers or other nucleophiles.  相似文献   

17.
The possible reactions of HO2 with five ketones were studied using a flow tube reactor equipped with a laser magnetic resonance detector. We did not observe reactive loss of HO2 in any of the five reactions. We place upper limits of <8 × 10−16, <7 × 10−16, <5 × 10−16, <4 × 10−16, and <9 × 10−16 (in units of cm3; molecule−1 S−1) at 298 K for the reactions of HO2 with CH3COCH3, CH3COC2H5, CH3COC3H7, C2H5COC2H5, and CH3COC4H9, respectively, to give products other than an adduct. We conclude that their reactions with HO2 are unlikely to be important loss processes for ketones in the atmosphere. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 573–580, 2000  相似文献   

18.
Despite its practical importance, organoiron chemistry remains poorly understood due to its mechanistic complexity. Here, we focus on the oxidative addition of organyl halides to phenylferrate anions in the gas phase. By mass-selecting individual phenylferrate anions, we can determine the effect of the oxidation state, the ligation, and the nuclearity of the iron complex on its reactions with a series of organyl halides RX. We find that Ph2Fe(I) and other low-valent ferrates are more reactive than Ph3Fe(II); Ph4Fe(III) is inert. The coordination of a PPh3 ligand or the presence of a second iron center lower the reactivity. Besides direct cross-coupling reactions resulting in the formation of RPh, we also observe the abstraction of halogen atoms. This reaction channel shows the readiness of organoiron species to undergo radical-type processes. Complementary DFT calculations afford further insight and rationalize the high reactivity of the Ph2Fe(I) complex by the exothermicity of the oxidative addition and the low barriers associated with this reaction step. At the same time, they point to the importance of changes of the spin state in the reactions of Ph3Fe(II).  相似文献   

19.
Mesomorphous butterfly-like shape molecules based on benzodithiophene, benzodithiophene-4,8-dione and cyclopentadithiophen-4-one core moieties were efficiently synthesized by the Suzuki-Miyaura coupling and Scholl oxidative cyclo-dehydrogenation reactions’ tandem. Most of the butterfly molecules spontaneously self-organize into columnar hexagonal mesophase. The electron-deficient systems possess strong solvent-gelling ability but are not luminescent, whereas the electron-rich terms do not form gels but strongly emit light between 400 and 600 nm. The charge carrier mobility was also measured by time-of-flight transient photocurrent technique in the mesophases for some of the compounds. They display hole-transport performances with positive charge mobility in the 10−3 cm−2 V−1 s−1 range, consistent with the high degree of ordering and stability of the columnar superstructures. In particular, the mesogen with a benzodithiophen-4,8-dione core shows ambipolar charge carrier transport with both high electron (μe=6.6×10−3 cm−2 V−1 s−1) and hole (μh=4.5×10−3 cm−2 V−1 s−1) mobility values.  相似文献   

20.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号