首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
报道了Na_2Ti_3O_7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na_2Ti_3O_7纳米片。此外,腐蚀后的钦片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g~(-1)的电流密度下具有175mAh·g~(-1)的可逆容量,在2000mA·g~(-1)的电流密度下循环3000周后,其容量仍保持120 mAh·g~(-1),容量保持率为96.5%。Na_2Ti_3O_7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na_2Ti_3O_7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na_2Ti_3O_7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

2.
通过电化学沉积方法在三维结构泡沫镍基体上沉积金属钴层, 利用固相氧化方法制备了三维结构泡沫Co3O4负极. XRD和SEM结果显示, 电化学沉积制备得到具有纳米结构的金属钴层, 经固相氧化处理, 在泡沫镍基体表面形成了Co3O4微米级的致密活性氧化层. 通过充放电和循环伏安以及电化学阻抗等方法研究了电极的电化学性能, 结果表明, 当放电电位区间为0.05~3.2 V时, 三维泡沫Co3O4于0.2 C倍率下充放电, 初始容量损失为29%, 经50次循环后, 质量比容量为824 mA·h/g, 三维泡沫结构提高了Co3O4电极的循环容量保持性能和倍率性能.  相似文献   

3.
通过自组装方式采用一步法制备了锂离子电池硅碳复合电极材料.使用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等对样品结构进行表征.结果表明,聚乙烯吡咯烷酮(PVP)包覆的纳米硅颗粒(Si@PVP)均匀嵌入到具有三维网络纳米孔结构的导电石墨化炭黑(GCB)骨架中,形成核壳复合型(Si@PVP-GCB)纳米颗粒,既提高了该复合电极材料的导电性能,又改善了材料的机械强度.在纳米级GCB颗粒内部存在的中空石墨环结构和包覆在纳米Si颗粒外面的PVP包覆层都有效缓冲了纳米Si颗粒在充放电过程中较大的体积变化,从而使纳米Si颗粒更加稳定.电化学测试结果表明,Si@PVP-GCB电极材料在电流密度为50 m A/g时,经过100次循环后其可逆容量仍达到545 m A·h/g时,远高于商品化的石墨微球(GMs)电极材料的容量(理论容量为372 m A·h/g).  相似文献   

4.
本文制备了纳米氧化锌负载镍修饰电极,并将其应用于葡萄酒中甘油的检测。首先通过直接沉淀法合成氧化锌纳米粒子,并采用扫描电子显微镜和X-射线衍射仪对制备的氧化锌纳米粒子进行微观结构表征。然后,利用电化学合成法使镍纳米粒子均匀负载在氧化锌纳米粒子表面以制备具有甘油催化作用的修饰电极,采用循环伏安法研究了该修饰电极的电化学性能及最优操作条件。结果表明,反应溶液pH值为13.5时,该修饰电极性能最优,该修饰电极的反应过程为扩散控制过程;该修饰电极的线性检测范围为0.2 mM~60 mM,检测限为7.35×10~(-5) mol·L~(-1)(S/N=3),灵敏度为42.02 mA/(mol·cm~2)。另外,该修饰电极具有很强的抗干扰和样品检测能力,可应用于葡萄酒中甘油含量的快速检测。  相似文献   

5.
在这项工作中,我们采用简单的水热方法在泡沫镍基底上生长了钴酸镍纳米片。结果表明,合成的NiCo_2O_4纳米片直接用作超级电容器电极,呈现出优异的电化学性能。在电流密度为1 m A·cm~(-2)时,其面积比电容达到1.26 C·cm~(-2);经过10000次充放电循环后,其比电容仍能保持初始容量的97.6%。以NiCo_2O_4纳米片为正极,活性炭为负极组装的超级电容器在功率密度为1.56和4.5 W·cm~(-3)时,其能量密度分别达到0.14和0.09 Wh·cm~(-3)。经过10000次循环后,器件仍能保持初始比电容的95%。以上结果证明合成的钴酸镍纳米片电极在未来的储能器件中具有良好的电化学应用前景。  相似文献   

6.
电化学双电层电容器用新型炭材料及其应用前景   总被引:4,自引:0,他引:4  
张浩  曹高萍  杨裕生  徐斌  张文峰 《化学进展》2008,20(10):1495-1500
活性炭是目前使用最为广泛的一种电化学双电层电容器(EDLC)的电极材料,但其固有的缺点制约了EDLC性能的进一步提高。用新型高性能炭电极材料可使EDLC比能量和比功率性能进一步提高。这些新型炭材料包括基于石墨层状结构的纳米门炭,基于碳纳米管阵列结构的毛皮炭,通过高温置换反应制备的骨架炭以及电极可整体成型的纳米孔玻态炭。本文介绍了这些炭材料的电化学特性及其在电化学双电层电容器中的应用,指出用这4种新型炭材料制备EDLC的比能量或比功率性能远高于目前活性炭基EDLC,具有良好的应用前景。  相似文献   

7.
雒和明  杨鹏  赵霞  张建强 《应用化学》2013,30(1):99-106
以焦粉为原料,用HNO3预处理除灰,采用KOH浸渍-煅烧活化法制备焦粉活性炭(CPAC),通过场发射扫描电子显微镜、X射线衍射等表征其形貌,采用BET测试其比表面积、孔结构及孔径分布。初步考察了活化温度、活化时间等对焦粉活性炭电极材料电化学性能的影响。采用共沉淀法制备CPAC/Al-Ni(OH)2复合电极材料,通过恒电流充放电测试及循环伏安测试表征CPAC/Al-Ni(OH)2复合电极材料的电化学性能。结果表明,当活化温度为800℃、活化时间为3 h制得的焦粉活性炭电极材料的电化学性能最佳,比电容达到211 F/g。CPAC-800℃-3 h/Al-Ni(OH)2复合电极材料随Al掺杂量的增大呈现先增大后减小的趋势。在固定Al质量掺杂量为4%,炭镍质量比为1∶1时所得复合材料的比电容量最大:1173.6 F/g。恒电流充放电及循环伏安测试表明Al掺杂量为4%、炭镍比为1∶1的复合材料具有较好的电化学性能。  相似文献   

8.
不同形貌和尺寸的锂离子电池SnS负极材料   总被引:7,自引:7,他引:0  
通过高能球磨、微波辅助合成和化学合成方法制备不同形貌和不同尺寸的SnS材料. 运用X射线衍射和透射电镜对其结构和形貌进行分析. 在透射电镜下观察发现, 所得SnS材料呈现出纳米颗粒、层片和纳米棒状. 电化学测试结果表明, 高能球磨和化学合成(无表面活性剂加入)得到的SnS材料有较好的电化学性能, 在循环40个周期后仍分别有375和414 mAh·g-1 的电化学容量. 纳米级SnS电极材料良好的电化学性能有赖于其紧凑的纳米结构, 一定的形貌及合适的尺寸. 尽管非活性相Li2S可以帮助维持SnS电极在充放电过程中的稳定结构, 但SnS的形貌及尺寸才是获得良好电化学性能的SnS电极的关键因素.  相似文献   

9.
纳米技术在能源领域的应用为解决化石燃料的消耗和环境污染问题提供了新的契机.水滑石(LDHs)作为一类典型的阴离子黏土材料,其独特的组成、结构及形貌可调性,使其成为一类优秀的能源储存和转化材料.其中,将水滑石材料进行纳米阵列结构化设计,结合水滑石优异的物理化学性能和纳米阵列的结构特性,已经成为构建高性能电化学电极的重要方法.本文综述了水滑石基纳米阵列电极的合成及其在电化学能量储存和转化上的应用,并进一步讨论了水滑石纳米阵列材料在该领域面临的挑战和发展趋势.  相似文献   

10.
为使TiO2纳米管阵列电极更好地应用于太阳能电池中,通过恒压阳极氧化法以0.5%(w,质量分数)NH4F/甘油作为电解液,在钛基体上制备出了TiO2纳米管阵列.随后将TiO2纳米管阵列电极在水中进行不同温度淬火处理,通过x射线衍射(XRD)仪、场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)和循环伏安法(CV)研究经淬火处理的TiO2纳米管阵列的形貌、晶体结构和电化学性能.研究得出TiO2纳米管阵列经淬火处理其表面获得更多Ti3+缺陷点和TiO2纳米碎片.经0℃淬火处理的TiO2纳米管阵列电极出现了更多Ti3+缺陷点和OH基团,且有更多的纳米碎片出现,其光电化学性能得到了大幅度提高,其40 min光照对甲基橙的光催化降解率高达96.2%.  相似文献   

11.
以NiOOH为助催化剂对ZnO进行改性,采用电化学沉积方法制备了纳米阵列结构的NiOOH/ZnO复合光电极。运用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、傅立叶红外光谱仪(FT-IR)和紫外可见光谱(UV-Vis)等测试手段对样品进行表征,并用电化学方法研究电极材料的光电化学性能。结果表明,制备的复合电极中NiOOH在ZnO表面分布均匀,颗粒大小约为50 nm,该复合电极在紫外和可见光区均表现出优良的光学吸收性能;电化学研究表明,该复合电极电阻率小,在模拟太阳光条件下其光电化学响应性能比ZnO明显增强,且对甲醇有良好的光电催化性质。NiOOH/ZnO复合电极展现出的这些优良光电化学性能,预示其在光电化学领域将会有良好地应用前景。  相似文献   

12.
刘昊  孙新枝 《化学研究》2020,31(2):124-132
通过两步水热合成法制备了具有核壳结构的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列.首先,以碳布为基底,水热法生成的ZnO沉积在碳布上形成ZnO纳米棒花簇.其次,以ZnO纳米棒为模板,水热法生成的Ni-Co双氢氧化物纳米片沉积在ZnO纳米棒表面,形成ZnO纳米棒@Ni-Co双氢氧化物纳米片复合材料阵列.形貌、结构分析和电化学性能测试表明,以碳布为基底,成功地合成了以ZnO纳米棒为模板并具有核壳结构的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列,该复合材料纳米片阵列具有较大的纵横比,且分散均匀.合成的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列具有良好的电化学性能,当电流密度为1 A/g时,其比电容值可达531.6 F/g,该复合材料在超级电容器电极材料领域具有良好的应用前景.  相似文献   

13.
为使TiO2纳米管阵列电极更好地应用于太阳能电池中, 通过恒压阳极氧化法以0.5%(w, 质量分数)NH4F/甘油作为电解液, 在钛基体上制备出了TiO2纳米管阵列. 随后将TiO2纳米管阵列电极在水中进行不同温度淬火处理, 通过X射线衍射(XRD)仪、场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)和循环伏安法(CV)研究经淬火处理的TiO2纳米管阵列的形貌、晶体结构和电化学性能. 研究得出TiO2纳米管阵列经淬火处理其表面获得更多Ti3+缺陷点和TiO2纳米碎片. 经0 ℃淬火处理的TiO2纳米管阵列电极出现了更多Ti3+缺陷点和OH 基团, 且有更多的纳米碎片出现, 其光电化学性能得到了大幅度提高, 其40 min光照对甲基橙的光催化降解率高达96.2%.  相似文献   

14.
在电场的作用下对石墨棒进行电化学剥离,使其表面形成相互平行排列,且垂直于石墨棒基底的二维(2D)石墨纳米片阵列(GNSA).然后通过阴极还原电沉积法制备Sn O2/石墨纳米片阵列(Sn O2/GNSA)复合电极.采用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.电化学测试表明该复合电极具有优异的超电容性能,在0.5 mol·L-1Li NO3电解质中,扫描速率为5 m V·s-1,电位窗口为1.4 V时,比电容达4015 F·m-2.由Sn O2/GNSA复合电极和相同电解质组装成的对称型超级电容器,在扫描速率为5 m V·s-1时,其电位窗口可增至1.8 V,能量密度达到0.41 Wh·m-2,循环5000圈后其比电容仍保持为初始比电容的81%.  相似文献   

15.
采用原位水热生长法在泡沫镍基底上制备了β-Ni(OH)2纳米盘并通过煅烧获得NiO,均可以直接作为工作电极。利用XRD和SEM对样品进行了表征,并进行了电化学性能测试,结果表明我们所制备的Ni(OH)2电极在2 M KOH溶液中2.5 A/g的放电电流密度下,比容量达1495 F/g,通过煅烧得到的NiO,同样可以作为电极材料。  相似文献   

16.
《电化学》2021,(2)
本文制备了嵌于多孔阳极氧化铝(AAO)膜中直径为200 nm,间距为450 nm的高密度(5.7×10~8 cm~(-2))的金纳米电极阵列,纳米电极分布规则,尺寸高度均一。我们将该金纳米电极阵列作为双极电极阵列,可将电极一侧的电化学法拉第信号在另一侧电极上转化成电致化学发光(ECL)信号,从而实现对单个铂纳米颗粒上氢气析出反应(HER)进行亚微米空间分辨率的电化学成像。本文介绍的方法为高空间分辨率成像电催化材料、能源材料以及细胞过程的局部电化学活性提供了一个良好的平台。  相似文献   

17.
采用不同方法制备了块状(Bulk)、 纳米球状(NPs)及三维有序多孔(3DPF)钙钛矿型LaCoO3电极材料, 并考察了材料的形貌、 结构与电化学储锂之间的相关性. 结果表明, 不同形貌的电极材料均呈钙钛矿型晶体结构, 但电化学储锂性能却表现出巨大差异: 在500 mA/g的电流密度下, 块状、 纳米球状及三维有序多孔LaCoO3电极经350次循环后放电比容量分别为157, 579和648 mA·h/g. 电化学性能的迥异主要归因于所制备的纳米及多孔结构使活性材料与电解液之间的接触面积增大, 反应活性位点明显增多, 传质电阻降低, 从而使电子传输和Li离子的嵌入/脱嵌过程得到显著改善.  相似文献   

18.
采用在纳米SiO2表面包覆聚苯胺,并经过热处理后,制备了SiO2/C纳米复合材料.通过X射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的晶体结构和表观形貌进行了表征.同时也对材料的电化学性能进行了测试,结果表明,50 mA/g电流密度下,SiO2/C纳米复合材料首次放电比容量达到830.5 mAh/g,100次循环后,放电比容量仍然保持在510 mA/g以上.电化学交流阻抗测试表明,SiO2表面包覆的碳层能显著减小电极的界面阻抗,提高电池的电化学性能.  相似文献   

19.
以无模板法制备了泡沫镍载Co(OH)2纳米线电极,利用扫描电镜(SEM)和透射电镜(TEM)观测了纳米线的表面形貌,利用X射线衍射(XRD)分析了Co(OH)2纳米线的结构,通过循环伏安、恒流充放电和交流阻抗测试了电极的电化学电容性能.结果表明:Co(OH)2呈线状生长,其直径约为300nm,长度约为8~10μm,密集地生长在泡沫镍骨架上.电流密度为10mA·cm-2时电极的放电比容量高达677F·g-1,循环500次后比容量仍保持在574F·g-1,电化学阻抗测试其电荷传递电阻仅为0.23Ω,500次循环后电荷传递电阻仅增加0.03Ω.  相似文献   

20.
通过高温热分解法制备了碳包覆氟化亚铁纳米复合材料(FeF2/C), 并对其结构、 形貌及电化学性能进行了研究. 结果表明, 该方法对FeF2实现了碳包覆, 且形成部分碳化铁(Fe3C). 电化学性能测试结果表明, 该材料在0.1C倍率下循环100周后的放电比容量达到246.7 mA·h/g, 相比于第2周的容量保持率高达93.6%, 具有良好的循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号