首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Radical cationic repair process of cissyn thymine dimer has been investigated when (1) sugar‐phosphate backbones were substituted by hydrogen atoms, (2) phosphate group was substituted by two hydrogen atoms each on a sugar ring and (3) sugar‐phosphate backbone was taken into account. The effect of the interactions between N1 and N1′ lone pairs and the C6‐C6′ antibonding orbital are the most important evidences for the cleavage of the C6‐C6′ bond in the first step of radical cationic repair mechanism in the absence of the sugar‐phosphate backbone. The impact of the N1 and N1′ lone pairs on the C6‐C6′ bond cleavage decreases and the energy barrier of the cleavage of that bond significantly increases in the presence of the deoxynucleoside sugars and the sugar‐phosphate backbone.  相似文献   

2.
This work reports on the fragmentation of phosphoinositides by tandem mass spectrometry (MS/MS) and MS3 experiments on a hybrid apex-Qe Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS) using internal infrared multiphoton dissociation (IRMPD). The fragmentation behavior of diacylphophatidylinositol triphosphate was intensively studied since an abundant loss of inositol biphosphate was observed. This loss was suggested to occur via phosphate migration along the inositol head group. Substantiation by MS3 experiments showed that this neutral loss is formed after the loss of water from the precursor ion, indicating phosphate migration along the inositol ring to the glycerol backbone. Further fragmentation of the ion formed by the loss of inositol biphosphate from diacylphophatidylinositol triphosphate resulted in the formation of a product ion with a molecular formula of C(3)H(5)O(7)P(2), corresponding to a glycerol backbone linked to two phosphate groups. We suggested different structures for this ion and compared their stability using modeling experiments.  相似文献   

3.
The importance of a backbone: The mechanism of formation of Dewar lesions has been investigated by using femtosecond IR spectroscopy and ab?initio calculations of the exited state. The 4π?electrocyclization is rather slow, occurs with an unusual high quantum yield, and--surprisingly--is controlled by the phosphate backbone.  相似文献   

4.
The dynamics of the DNA phosphodiester backbone conformations have been studied for a strong topoisomerase II cleavage site (site 22) using molecular dynamics simulations in explicit water and in the presence of sodium ions. We investigated the backbone motions and more particularly the BI/BII transitions involving the epsilon and zeta angles. The consensus cleavage site is adjacent to the phosphate which shows the most important phosphodiester backbone flexibility in the sequence. We infer that these latter properties could be responsible for the preferential cleavage at this site possibly through the perturbation of the cleavage/ligation activities of the topoisomerase II. More generally, the steps pur-pur and pyr-pur are those presenting the highest BII contents. Relations are observed between the backbone phosphodiester BI/BII transitions and the flexibility of the deoxyribose sugar and the helical parameters such as roll. The roll is sequence dependent when the related phosphate is in the BI form, whereas this appears not to be true when it is in the BII form. The BI/BII transitions are associated with water migration, and new relations are observed with counterions. Indeed, it is observed that a strong coupling exists between the BII form and the presence of sodium ions near the adjacent sugar deoxyribose. The presence of sodium ions in the O4' surroundings or their binding could assist the BI to BII transition by furnishing energy. The implications of these new findings and, namely, their importance in the context of the sequence-dependent behavior of BI/BII transitions will be investigated in future studies.  相似文献   

5.
We use quantum mechanics/molecular mechanics simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA-cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ~15 kcal mol(-1), encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ~1-100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The nonmonotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton-transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA-cleavage reaction.  相似文献   

6.
二氯二乙基锡与DNA作用的研究   总被引:7,自引:0,他引:7  
利用循环伏安、紫外光谱和粘度测定等手段,对二氯二乙基锡[Et2SnCl2]与DNA的作用机制进行了研究.结果明,Et2SnCl2主要作用于DNA的骨架磷酸基团,使DNA构象收缩,相对粘度增加,产生减色效应,始终未观察到增色效应.提出了Et2SnCl2对DNA可能的作用机制模型.  相似文献   

7.
In previous works, the effects on the devitrification mechanism of a certain composition calcium phosphate with additives of TiO2, SiO2, Al2O3, CeO2 have been studied. It was found that some metal oxide additives played a key role as the nucleation agent in calcium phosphate glass-ceramics, and the devitrification mechanism of calcium phosphate glass system was changed drastically by addition such as metal oxide. Hydroxyapatite (HAp), tricalcium phosphate (TCP) and β-calcium phosphate (β-CaP2O6) whisker are the three most biologically compatible materials to human bone in bio-ceramics field. In this work, the effect on devitrification mechanism and the physical properties of certain composition calcium phosphate glass with three above additives were investigated, and the result shown that although no fine crystalline was induced in the certain composition of calcium phosphate glass when a large amount of additive was added, but such additives play a catalyst role by lowering the activation energies of devitrification. It would supplement the mechanical properties and the biocompatibility for the calcium phosphate glasses.  相似文献   

8.
To probe structural features of a polypurine tract (PPT) that mediate its specific recognition and processing, a model 20 bp RNA/DNA hybrid duplex, which includes the full PPT sequence of the Saccharomyces cerevisiae LTR-retrotransposon Ty3, has been investigated using solution NMR spectroscopy. While homonuclear NOESY and DQF-COSY analyses indicate that this PPT-containing RNA/DNA hybrid adopts an overall A-form-like helical geometry, an unexpected sugar pucker switch has been detected for the ribose at position +1, relative to the cleavage site, on the RNA strand. A model of the conformational changes induced by the A- to B-type sugar pucker switch shows a significant change in the backbone trajectory of the RNA strand, which alters the presentation of backbone phosphate and 2' hydroxyl groups 3' of this residue. This observation implies that part of the mechanism governing RNase H fidelity may be through distortion of the RNA/DNA helix one base ahead of the scissile bond.  相似文献   

9.
10.
Pistol ribozymes constitute a new class of small self‐cleaving RNAs. Crystal structures have been solved, providing three‐dimensional snapshots along the reaction coordinate of pistol phosphodiester cleavage, corresponding to the pre‐catalytic state, a vanadate mimic of the transition state, and the product. The results led to the proposed underlying chemical mechanism. Importantly, a hydrated Mg2+ ion remains innersphere‐coordinated to N7 of G33 in all three states, and is consistent with its likely role as acid in general acid base catalysis (δ and β catalysis). Strikingly, the new structures shed light on a second hydrated Mg2+ ion that approaches the scissile phosphate from its binding site in the pre‐cleavage state to reach out for water‐mediated hydrogen bonding in the cyclophosphate product. The major role of the second Mg2+ ion appears to be the stabilization of product conformation. This study delivers a mechanistic understanding of ribozyme‐catalyzed backbone cleavage.  相似文献   

11.
Considerable attention has focused on the use of alternatives to the native ribose and phosphate backbone of small interfering RNAs for therapeutic applications of the RNA interference pathway. In this synopsis, we highlight the less common chemical modifications, namely, those of the RNA nucleobases. Base modifications have the potential to lend insight into the mechanism of gene silencing and to lead to novel methods to overcome off-target effects that arise due to deleterious protein binding or mis-targeting of mRNA.  相似文献   

12.
In this study, we propose newly derived parameters for phosphate ions in the context of the GROMOS force field parameter sets. The non‐bonded parameters used up to now lead to a hydration free energy, which renders the dihydrogen phosphate ion too hydrophobic when compared to experimentally derived values, making a reparametrization of the phosphate moiety necessary. Phosphate species are of great importance in biomolecular simulations not only because of their crucial role in the backbone of nucleic acids but also as they represent one of the most important types of post‐translational modifications to protein side‐chains and are an integral part in many lipids. Our re‐parametrization of the free dihydrogen phosphate (H PO ) and three derivatives (methyl phosphate, dimethyl phosphate, and phenyl phosphate) leads, in conjunction with the previously updated charged side‐chains in the GROMOS parameter set 54A8, to new nucleic acid backbone parameters and a 54A8 version of the widely used GROMOS protein post‐translational modification parameter set. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Hopmann KH  Guo JD  Himo F 《Inorganic chemistry》2007,46(12):4850-4856
The first-shell mechanism of nitrile hydratase (NHase) is investigated theoretically using density functional theory. NHases catalyze the conversion of nitriles to amides and are classified into two groups, the non-heme Fe(III) NHases and the non-corrinoid Co(III) NHases. The active site of the non-heme iron NHase comprises a low-spin iron (S=1/2) with a remarkable set of ligands, including two deprotonated backbone nitrogens and both cysteine-sulfenic and cysteine-sulfinic acids. A widely proposed reaction mechanism of NHase is the first-shell mechanism in which the nitrile substrate binds directly to the low-spin iron in the sixth coordination site. We have used quantum chemical models of the NHase active site to investigate this mechanism. We present potential energy profiles for the reaction and provide characterization of the intermediates and transition-state structures for the NHase-mediated conversion of acetonitrile. The results indicate that the first-shell ligand Cys114-SO- could be a possible base in the nitrile hydration mechanism, abstracting a proton from the nucleophilic water molecule. The generally suggested role of the Fe(III) center as a Lewis acid, activating the substrate toward nucleophilic attack, is shown to be unlikely. Instead, the metal is suggested to provide electrostatic stabilization to the anionic imidate intermediate, thereby lowering the reaction barrier.  相似文献   

14.
15.
16.
The role of the DNA phosphodiester backbone in the transfer of melting cooperativity between two helical domains was experimentally addressed with a helix-bulge-helix DNA model, in which the bulge consisted of a varying number of either conformationally flexible propanediol or conformationally constrained bicyclic anucleosidic phosphodiester backbone units. We found that structural communication between two double helical domains is transferred along the DNA backbone over the equivalent of ca. 12-20 backbone units, depending on whether there is a symmetric or asymmetric distribution of the anucleosidic units on both strands. We observed that extension of anucleosidic units on one strand only suffices to disrupt cooperativity transfer in a similar way as if extension occurs on both strands, indicating that the length of the longest anucleosidic inset determines cooperativity transfer. Furthermore, conformational rigidity of the sugar unit increases the distance of coopertivity transfer along the phosphodiester backbone. This is especially the case when the units are asymmetrically distributed in both strands.  相似文献   

17.
Syntheses are described for two novel twisted intercalating nucleic acid (TINA) monomers where the intercalator comprises a benzene ring linked to a naphthalimide moiety via an ethynediyl bridge. The intercalators Y and Z have a 2‐(dimethylamino)ethyl and a methyl residue on the naphthalimide moiety, respectively. When used as triplex‐forming oligonucleotides (TFOs), the novel naphthalimide TINAs show extraordinary high thermal stability in Hoogsteen‐type triplexes and duplexes with high discrimination of mismatch strands. DNA Strands containing the intercalator Y show higher thermal triplex stability than DNA strands containing the intercalator Z . This observation can be explained by the ionic interaction of the protonated dimethylamino group under physiological conditions, targeting the negatively charged phosphate backbone of the duplex. This interaction leads to an extra binding mode between the TFO and the duplex, in agreement with molecular‐modeling studies. We believe that this is the first example of an intercalator linking the TFO to the phosphate backbone of the duplex by an ionic interaction, which is a promising tool to achieve a higher triplex stability.  相似文献   

18.
Quantum chemistry methods coupled with a continuum solvation model have been applied to evaluate the substrate-assisted catalysis (SAC) mechanism recently proposed for the hydrolysis of phosphate monoester dianions. The SAC mechanism, in which a proton from the nucleophile is transferred to a nonbridging phosphoryl oxygen atom of the substrate prior to attack, has been proposed in opposition to the widely accepted mechanism of direct nucleophilic reaction. We have assessed the SAC proposal for the hydrolysis of three representative phosphate monoester dianions (2,4-dinitrophenyl phosphate, phenyl phosphate, and methyl phosphate) by considering the reactivity of the hydroxide ion toward the phosphorus center of the corresponding singly protonated monoesters. The reliability of the calculations was verified by comparing the calculated and the observed values of the activation free energies for the analogous SN2(P) reactions of F with the monoanion of the monoester 2,4-dinitrophenyl phosphate and its diester analogue, methyl 2,4-dinitrophenyl phosphate. It was found that the orientation of the phosphate hydrogen atom has important implications with regard to the nature of the transition state. Hard nucleophiles such as OH and F can attack the phosphorus atom of a singly protonated phosphate monoester only if the phosphate hydrogen atom is oriented toward the leaving-group oxygen atom. As a result of this proton orientation, the SAC mechanism in solution is characterized by a small Brønsted coefficient value (βlg=−0.25). This mechanism is unlikely to apply to aryl phosphates, but becomes a likely possibility for alkyl phosphate esters. If oxyanionic nucleophiles of pKa<11 are involved, as in alkaline phosphatase, then the SN2(P) reaction may proceed with the phosphate hydrogen atom oriented toward the nucleophile. In this situation, a large negative value of βlg (−0.95) is predicted for the substrate-assisted catalysis mechanism.  相似文献   

19.
The green fluorescent protein (GFP) creates a fluorophore out of three sequential amino acids by promoting spontaneous posttranslational modifications. Here, we use high-resolution crystallography to characterize GFP variants that not only undergo peptide backbone cyclization but additional denaturation-induced peptide backbone fragmentation, native peptide hydrolysis, and decarboxylation reactions. Our analyses indicate that architectural features that favor GFP peptide cyclization also drive peptide hydrolysis. These results are relevant for the maturation pathways of GFP homologues, such as the kindling fluorescent protein and the Kaede protein, which use backbone cleavage to red-shift the spectral properties of their chromophores. We further propose a photochemical mechanism for the decarboxylation reaction, supporting a role for the GFP protein environment in facilitating radical formation and one-electron chemistry, which may be important in activating oxygen for the oxidation step of chromophore biosynthesis. Together, our results characterize GFP posttranslational modification chemistry with implications for the energetic landscape of backbone cyclization and subsequent reactions, and for the rational design of predetermined spontaneous backbone cyclization and cleavage reactions.  相似文献   

20.
The PcrA DNA helicases are important bacterial enzymes and quintessential examples of molecular motors. Through conformational changes caused by ATP hydrolysis, they move along the template double helix, breaking the hydrogen bonds holding the two strands together, and separating the template chains so that the genetic information can be accessed. The flexibility of the DNA backbone is essential for the unidirectional translocation of PcrA. A modified DNA substrate with reduced backbone rotational flexibility (via an incorporated vinylphosphonate linkage) has previously been designed and tested as a helicase substrate. The results show that a single modification on the backbone is sufficient to inhibit the activity of PcrA. In this paper a range of molecular simulation methods have been applied to examine the structural origins of this inhibitory effect, as it tests our theories of the mechanism of action of this motor. We observe that the chemical modification has different effects on the energetics of DNA translocation through the protein as it reaches different sub-sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号