首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The spectral distributions of two previously reported weak luminescences from liquid cultures of the yeast Saccharomyces cerevisiae have been determined. During the logarithmic phase of growth, emission was observed as a broad UV band between 200 and 425 nm, and as a visible region band between 525 and 700 nm. During the stationary phase, there were two narrow bands centred at 250 and 650 nm, and a broad band extending from 325 to 525 nm. The UV components are compared with Gurwitsch's mitogenetic radiation, and possible chemical and radiolytic sources of the luminescences are discussed.  相似文献   

2.
Abstract— In experiments with the non-photoreactivable yeast Candida guilliermondii , radiations at 313, 334 and 365 nm, having no effect on untreated cell populations, produced an 'enhancing' effect on the lethality of 254 nm-pretreated cells. Wavelengths in the visible region of the spectrum did not exhibit a similar effect.  相似文献   

3.
Phase transformation of TiO2 from anatase to rutile is studied by UV Raman spectroscopy excited by 325 and 244 nm lasers, visible Raman spectroscopy excited by 532 nm laser, X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV Raman spectroscopy is found to be more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase is detected by UV Raman spectroscopy for the sample calcined at higher temperatures than when it is detected by visible Raman spectroscopy and XRD. The inconsistency in the results from the above three techniques suggests that the anatase phase of TiO2 at the surface region can remain at relatively higher calcination temperatures than that in the bulk during the phase transformation. The TEM results show that small particles agglomerate into big particles when the TiO2 sample is calcined at elevated temperatures and the agglomeration of the TiO2 particles is along with the phase transformation from anatase to rutile. It is suggested that the rutile phase starts to form at the interfaces between the anatase particles in the agglomerated TiO2 particles; namely, the anatase phase in the inner region of the agglomerated TiO2 particles turns out to change into the rutile phase more easily than that in the outer surface region of the agglomerated TiO2 particles. When the anatase particles of TiO2 are covered with highly dispersed La2O3, the phase transformation in both the bulk and surface regions is significantly retarded, owing to avoiding direct contact of the anatase particles and occupying the surface defect sites of the anatase particles by La2O3.  相似文献   

4.
Abstract— Weak luminescence was detected using photon counting equipment, from oxygenated, liquid cultures of Escherichia coli during two stages of its growth cycle. The first period of emission occurred during the exponential phase of growth and comprised a UV(210–330 nm) band and a visible region(450–620 nm) band, the total intensity being (1.65 ± 0.12) x 103 counts s-1. The second period of emission occurred during the stationary phase of growth and comprised only a visible region(450–620 nm) band of intensity (8.72 ± 0.15) x 103 counts s-1. When the growth temperature was raised from 306.15 to 310.15 K, the above emission intensities were approximately halved, but the spectra were not changed significantly. No luminescence was observed at either temperature when the E. coli was grown anaerobically. The visible region luminescence was attributed to excited carbonyl groups and excited singlet O2 dimers formed during the decomposition of lipid peroxides. The UV component was tentatively assigned to oxidative side reactions accompanying the synthesis of proteins.  相似文献   

5.
Blends obtained from polyamide 6 and polyester or polyether polyurethanes were investigated by means of DMTA. The blends were prepared by compounding in a twin-screw Brabender —Plasticorder. Changes in composition did not influence the glass temperature of the amorphous fraction of the polyamide, but also no distinct transition for separated polyurethane soft segment was visible. Therefore the blends seem to be multiphase systems, where the elastomeric polyurethane phase is dispersed in a continuous polyamide phase. From changes in the β relaxation region of the polyamide better miscibility of polyester polyurethanes comparing to polyether polyurethanes was explained by hydrogen bonding in the common amorphous phase.  相似文献   

6.
Previous studies have shown that the cholesteryl ester core of plasma low density lipoprotein (LDL) can be extracted with heptane and replaced with a variety of hydrophobic molecules. In the present report we use this reconstitution technique to incorporate two fluorescent probes, 3-pyrenemethyl-23, 24-dinor-5-cholen-22-oate-3 beta-yl oleate (PMCA oleate) and dioleyl fluorescein, into heptane-extracted LDL. Both fluorescent lipoprotein preparations were shown to be useful probes for visualizing the receptor-mediated endocytosis of LDL in cultured human fibroblasts. When normal fibroblasts were incubated at 37 degrees C with either of the fluorescent LDL preparations, fluorescent granules accumulated in the perinuclear region of the cell. In contrast, fibroblasts from patients with the homozygous form of familial hypercholesterolemia (FH) that lack functional LDL receptors did not accumulate visible fluorescent granules when incubated with the fluorescent reconstituted LDL. A fluorescence-activated cell sorter was used to quantify the fluorescence intensity of individual cells that had been incubated with LDL reconstituted with dioleyl fluorescein. With this technique a population of normal fibroblasts could be distinguished from a population of FH fibroblasts. The current studies demonstrate the feasibility of using fluorescent reconstituted LDL in conjunction with the cell sorter to isolate mutant cells lacking functional LDL receptors.  相似文献   

7.
—Luminescence was detected from oxygenated, liquid cultures of the yeast Saccharomyces cerevisiae with a photon counter sensitive between 200 and 600 nm. Four periods of emission were observed: (1) during the late exponential phase (137 ± 6 counts s−1); (2) during the early stationary phase (118 ± 24 counts s−1); (3) during the late stationary phase ( ca. 1000 counts s−1); and (4) during the very late stationary phase ( ca. 1000 counts s−1). Emissions (3) and (4) have not been previously reported. Experiments in which the yeast was temporarily separated from the nutrient medium suggested that all of the luminescences arose from within the yeast cell. Respiratory deficient ("petite") mutants of S. cerevisiae gave similar emissions, except that the first and third emission peaks were more intense and an early shoulder appeared on the first peak. All of the emissions from normal and "petite" cultures disappeared when the yeast was grown anaerobically. It was concluded that the luminescences do not arise from any of the reactions in the fermentative and respiratory pathways and that O2, may be involved in the processes leading to emission.  相似文献   

8.
Abstract— The H2-photoproduction in the presence of dithionite measured in wild type and mutant cells of Scenedesmus obliquus demonstrates two sequential phases. In mutants showing only PS I activity phase 1 of H2-photoproduction is visible with its core activity. When PS II is developed during greening, considerable activity is added to the core of phase I and phase II activity appears. Addition of DCMU reduces H2-photoproduction by about 90%. The residual activity is completely attributed to the core of phase I. It was concluded that the core of phase I is dependent upon PS I only and can use sources different from water as electron donors. Phase II is dependent upon the capacity of PS II, a functioning photosynthetic apparatus and water as electron donor. The results are supported by studies of wavelength dependent activity of the two separate phases of H2-photoproduction.  相似文献   

9.
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.  相似文献   

10.
The Cole-Cole α is a number that is often used to describe the divergence of a measured dielectric dispersion from the ideal dispersion exhibited by a Debye type of dielectric relaxation, and is widely assumed to be related to a distribution of the relaxation times in the system involved. The magnitude and relaxation time of the β-dielectric dispersion due to the charging of the plasma membrane capacitance of cell suspensions depend, inter alia, on the cell radius. An investigation was carried out to determine whether there might therefore be a relationship between the Cole-Cole α of the β-dispersion of yeast cell suspensions and the distribution of cell sizes. Changes in the Cole-Cole α during the batch culture of baker's yeast were recorded, showing an increase in the Cole-Cole α during the exponential phase (more than 0.3) relative to those of the lag phase (about 0.28) and the stationary phase (about 0.2). Although the cell size distribution, measured by flow cytometry, also showed an increase in breadth during the exponential phase, this was not strictly related to the changes in the Cole-Cole α observed. Further, the Cole-Cole α calculated from the measured cell size distribution was significantly smaller than that obtained experimentally. Simulations in which the internal conductivity or membrane capacitance per unit area of individual cells were allowed to vary substantially did not account for the “excessive” Cole-Cole α. Thus the magnitude of the Cole-Cole α of the β-dispersion of yeast cells cannot be ascribed simply to the charging of a static membrane capacitance in cells of differing sizes and/or internal conductivities.  相似文献   

11.
A mathematical model was developed to describe the growth and death of the yeastKluyveromyces fragilis in cheese whey under aerobic batch fermentation. The model is capable of determining the lengths of the lag, exponential, stationary, and death phases as well as the number of yeast cells during these phases. It predicted the experimental results withR 2 value of 0.99. The total number of yeast cells synthesized in the fermenter was reduced to 55% after 52 h (46 h from the beginning of the death phase). The high percentage of curvival was attributed to the fact that the yeastK. fragilis reproduced by sporulation (each ascus had 8–10 spores) during the death phase owing to the lack of nutrient. The spores protected the yeast from dying. The maximum specific growth rate (during exponential phase) was 0.23 h?1, whereas the maximum specific death rate (during the death phase) was ?0.32 h?1.  相似文献   

12.
PBT is a semi-crystalline thermoplastic polymer whose deformation behavior highly depends on processing parameters. This makes it a model polymer for investigating morphological changes caused by deformation on the spherulitic and lamellar level. In the neck region all states of deformation of the spherulites are observed. Even in the fibrillar phase the borders of the spherulites remain visible. The spherulitic structure is not totally destructed in the neck. The lamellar structure of the fibrillar phase significantly differs from that of the spherulitic region. The lamellae are orientated with respect to the direction of deformation and the lamellae heights are reduced distinctly. Scanning electron microscopy of fracture surfaces reveals for some samples a sharp frontier between spherulitic and fibrillar region. This leads to the conclusion that the necking process may be a phase transition between an isotropic and a highly orientated phase, as predicted for a Van der Waals network.  相似文献   

13.
掺钕氟氧化物玻璃陶瓷的制备及表征   总被引:1,自引:0,他引:1  
采用熔融和晶化技术合成出含CaF2微晶的Nd3+离子掺杂透明氟氧化物玻璃陶瓷材料, 并通过DTA, XRD, FEG-ESEM和UV-Vis-Nir分光光度计和傅里叶变换荧光光谱仪等对样品进行了表征. 结果表明, 玻璃陶瓷主晶相为CaF2, 晶相粒径为15 nm; 可见光透过率为78%~87%, 近红外透过率为84%~93%; 由于Nd3+在热处理后优先富集在具有低声子能量的CaF2晶相中, 从而改变了配体场, 使荧光谱线在1060 nm处的峰值比原始玻璃强度大.  相似文献   

14.
15.

Background

The mitochondrial electron transport chain oxidizes matrix space NADH as part of the process of oxidative phosphorylation. Mitochondria contain shuttles for the transport of cytoplasmic NADH reducing equivalents into the mitochondrial matrix. Therefore for a long time it was believed that NAD(H) itself was not transported into mitochondria. However evidence has been obtained for the transport of NAD(H) into and out of plant and mammalian mitochondria. Since Saccharomyces cerevisiae mitochondria can directly oxidize cytoplasmic NADH, it remained questionable if mitochondrial NAD(H) transport occurs in this organism.

Results

NAD(H) was lost more extensively from the matrix space of swollen than normal, condensed isolated yeast mitochondria from Saccharomyces cerevisiae. The loss of NAD(H) in swollen organelles caused a greatly decreased respiratory rate when ethanol or other matrix space NAD-linked substrates were oxidized. Adding NAD back to the medium, even in the presence of a membrane-impermeant NADH dehydrogenase inhibitor, restored the respiratory rate of swollen mitochondria oxidizing ethanol, suggesting that NAD is transported into the matrix space. NAD addition did not restore the decreased respiratory rate of swollen mitochondria oxidizing the combination of malate, glutamate, and pyruvate. Therefore the loss of matrix space metabolites is not entirely specific for NAD(H). However, during NAD(H) loss the mitochondrial levels of most other nucleotides were maintained. Either hypotonic swelling or colloid-osmotic swelling due to opening of the yeast mitochondrial unspecific channel (YMUC) in a mannitol medium resulted in decreased NAD-linked respiration. However, the loss of NAD(H) from the matrix space was not mediated by the YMUC, because YMUC inhibitors did not prevent decreased NAD-linked respiration during swelling and YMUC opening without swelling did not cause decreased NAD-linked respiration.

Conclusion

Loss of endogenous NAD(H) from isolated yeast mitochondria is greatly stimulated by matrix space expansion. NAD(H) loss greatly limits NAD-linked respiration in swollen mitochondria without decreasing the NAD-linked respiratory rate in normal, condensed organelles. NAD addition can totally restore the decreased respiration in swollen mitochondria. In live yeast cells mitochondrial swelling has been observed prior to mitochondrial degradation and cell death. Therefore mitochondrial swelling may stimulate NAD(H) transport to regulate metabolism during these conditions.  相似文献   

16.
The synthesis of new side chain cholesteric liquid crystalline elastomers containing the flexible non-mesomorphic crosslinking agent M-1 and the cholesteric monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the obtained monomers and network polymers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The glass transition temperatures and isotropic temperatures of the mesomorphic elastomers decreased as the concentration of crosslinking units increased; in the mesomorphic region the liquid crystalline elastomers showed elasticity, reversible phase transitions and Grandjean texture. The flexible crosslinking agent did not disturb the cholesteric structure; moreover, it was beneficial for adjusting the helix of the cholesteric liquid crystalline polymers, and cholesteric elastomers P-6, P-7, show reversible selective reflection of visible light.  相似文献   

17.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

18.
 研究了几种不同粒径的TiO2在CH3CCH和H2O的光催化反应中的催化活性.结果表明,利用离子注入法可以拓展纳米TiO2催化剂的光吸收区域,使其吸收带向可见光方向偏移,且偏移程度随着TiO2粒径的增大而增大;特别是注入V离子使TiO2催化剂在可见光区域具有光催化活性.V离子注入后,TiO2催化剂在紫外区域的光催化活性没有下降,但在可见光区域的光催化活性有所提高.在五种光催化剂中,具有中等粒径大小的P-25注入V离子后表现出最高的光催化活性.在太阳光直接照射下,这些光催化剂也具有较高的催化活性.  相似文献   

19.
Abstract— This paper describes the mutant dkgl in the fern Ceratopteris richardii, which shows rapid germination in darkness but is markedly inhibited by white light. Action spectra plotted at 10 nm intervals from 400 to 800 nm are presented for germination responses of wild-type and mutant spores to photon flux densities of 0.004, 0.04 and 0.4 jtmol/mVs. The action spectra for wild-type spores exhibit a sharp phytochrome-mediated peak at 660 nm, a broad peak from 670 to 740 nm resulting from an apparent high irradiance response and no germination below 560 nm. In the corresponding action spectra for mutant spores, the blue region displays rather complex fine structure with prominent minima at 450 and 470 nm, which suggests that cryptochrome is unaltered in these spores. The region from 550 to 640 nm shows the greatest inhibition of spore germination, but this region exhibits no obvious fine structure, which argues rather strongly against the possibility of a unique photoreceptor being active in mutant spores. The mutant spectra resemble the wild-type spectra in the region from 650 to 800 nm, and thus phytochrome seems normal in the mutant spores. The dkgl mutation appears to act late in the phytochrome transduction pathway where a hypothetical coupling protein may regulate the light-sensitive step in spore germination.  相似文献   

20.
The wavelength dependence of inactivation and mutagenesis in the range between 254 and 313 nm was investigated in haploid cells of the yeast Saccharomyces cerevisiae. The action spectra for a wild type and an excision deficient mutant essentially corresponded to those for bacteria and mammalian cells. There were, however, minor differences. The ratio of mutagenic to lethal action decreased with increasing wavelength in the wild type, but remained constant in the excision deficient mutant. This is discussed in terms of error-prone and erro-free repair. For both inactivation and mutagensis, photorcactivability was lower with longer wavelengths in the wild type, but did not change in the excision deficient mutant. Implications for the role of pyrimidine dimers are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号