首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel aluminates were prepared by sol–gel and impregnation methods and calcined at 1100 °C. The sol–gel made samples were prepared with different amounts of nickel (Ni/Al molar ratio equal to 0, 0.25, 0.5, and 0.75) and aging times (24 and 48 h). The samples were characterized by X-ray diffraction, induced couple plasma, nitrogen physisorption, transmission and scanning electron microscopy, and ammonia temperature programmed desorption (NH3-TPD). In the sol–gel made samples, only the NiAl2O4 structure of nickel aluminate was defined, while for impregnation, NiAl10O16 was formed as well. The sol–gel made samples had low specific surface areas (7.7–12.4 m2/g), but a sample prepared by impregnation method had higher specific surface area (67.2 m2/g). The surface acidity density decreased by increasing the amount of nickel and was the lowest for impregnation method.  相似文献   

2.
This research aimed to prepare cotton fibres with novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant properties. A three-component equimolar sol mixture, which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide, was applied to the cotton fabric using the sol–gel process. The presence of the coating on the cotton fibres was confirmed by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The functional properties of the coated cotton fabric were determined from liquid contact angle measurements and antibacterial activity, burning behaviour, and thermo-oxidative stability studies. The results demonstrate that a unique, compatible, and uniform organic-inorganic hybrid polymer network was formed on the fabric surface, which preserved its simultaneous hydrophobic (water contact angle of 135 ± 2°), oleophobic (n-hexadecane contact angle of 117 ± 1°), and bactericidal (bacterial reduction of 100 %) properties and incorporated the enhanced thermo-oxidative stability of the modified cellulose fibres.  相似文献   

3.
This study concerns the organic–inorganic hybrid coating of silica sol based on dyed cotton, silk and wool fabrics in order to increase the repellence to capsicum oil via adding methyltriethoxysilane, octyltriethoxysilane, hexadec-ltrimethoxysilane or tridecafluorooctyltriethoxysilane (FAS) in the inorganic silica sol. The dyed cotton fabric treated with hybrid silica sol doped with FAS (F-silica sol, FAS 4 %) presents oil-repellent capability, and the contact angles of capsicum oil on the treated cotton, silk and wool fabrics are 98.5°, 111.59° and 122.15°, respectively. A high FAS concentration (20 %) can improve the oil-repellent ability to 5 grades comparing to the untreated fabrics. The color strengths (K/S) of the coated fabrics change slightly, while the maximum absorption wavelengths of the coated fabrics are the same as the untreated fabrics. Although the drape coefficient of cotton fabric is increased to 54 % from 39 % after coated with F-silica sol, the effect is not significant. Compared to the weight gain rate of untreated cotton, silk and wool samples (1.89, 1.23 and 2.38 %), the weight gain rate of the cotton, silk and wool samples coated with F-silica sol are 6.99, 4.76 and 7.69 %, respectively. The calculated sol–gel weight gains (5.10, 3.53 and 5.31 %) of coated fabrics indicate that the silica coating is subsistent on the fiber surfaces.  相似文献   

4.
Silica materials (ILDEHPASGs) consisting of ionic liquids and di-(2-ethylhexyl)phosphoric acid (DEHPA) for Ce(III) extraction was prepared by a sol–gel method using the hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim]PF6) as porogen and solvent medium. The ILDEHPASGs were characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, Fourier transform infrared, and thermogravimetric analyses. The results indicated the doping of DEHPA and [C8mim]PF6 in ILDEHPASG-3 would evidently affect the formation of porous structure of sol–gel materials. ILDEHPASG-3 also possessed more channels and macropores than the blank sorbent; the surface area and pore volume of ILDEHPASG-3 were 409 m2 g?1 and 0.444 cm3 g?1, respectively. [C8mim]PF6 and DEHPA were only physically confined or entrapped in the growing covalent silica network rather than chemically bound to the inorganic matrix. The majority of [C8mim]PF6 and DEHPA were stably immobilized in the gel. Then, the effects of contact time and pH were determined. The results showed the sorption of Ce(III) strongly depended on the contact time and pH, and ILDEHPASGs had high sorption ability for Ce(III). The results were analyzed by both Langmuir and Freundlich adsorption isotherm models, and the latter was found to give a better fit.  相似文献   

5.
Silica antireflective coatings modified by hexamethyldisilazane (HMDS) were deposited on clean substrates (silicon wafer or K9 glass blanks) by sol–gel processing. The effects of HMDS on the contamination resistant capability and laser-induced damage threshold (LIDT) of coatings were investigated. Transmission electron microscopy revealed that a stable sol with uniformly distributed silica particles with an average particle size of about 15 nm was acquired by adding appropriate amount of HMDS into the standard SiO2 sol. With the modified sol the resultant coatings were hydrophobic and the contact angle for water increased with increasing amount of HMDS in the reaction mixture. Such increase in hydrophobicity was not the result of surface roughness. The antireflective properties were retained after HMDS-treatment and the maximum transmission values were above 99 %. The introduction of HMDS into silica sols had also increased the LIDT of coatings from 24.3 to 37.0 J cm?2 when the molar ratio of HMDS to tetraethoxysilane was 0.05:1. The increase in LIDT was attributed to the decrease of nodular defect and uniform microstructures of coatings as an effect of the HMDS modification. After some of the hydroxyl groups on the surface of the SiO2 particle were replaced by methyl groups, from which the SiO2 particle gained a water-repellent surface, the stability of coatings in vacuum was increased. The maximum transmission values of modified coatings decreased by only 0.25 % after storage under vacuum for 168 h. In contrast, the standard sol–gel silica coatings decreased about 2 % under similar conditions. The LIDT of modified coatings remained as high as 30.8 J cm?2, more than that of standard coatings stored for the same duration in air.  相似文献   

6.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

7.
The surface modification of cellulose fibres was performed with the use of low-pressure water vapour plasma, followed by the application of a pad-dry-cure sol–gel coating with the water- and oil-repellent organic–inorganic hybrid precursor fluoroalkyl-functional siloxane (FAS), with the aim of creating the “lotus effect” on the cotton fabric surface. The tailored “lotus effect” was confirmed by measurements of the contact angle of water (154°) and n-hexadecane (140°), as well as by measurements of the water sliding angle (7°), which were used to identify the super-hydrophobic, oleophobic and self-cleaning properties of the modified fibres. The chemical and morphological changes caused by modifications of the fibres were investigated by XPS, FTIR, AFM and SEM. The results show that the plasma pre-treatment simultaneously increased the surface polarity, average roughness, and surface area of the fabric. The application of the FAS coating after plasma pre-treatment caused only a slight increase in the surface roughness, accompanied by a decrease in the surface area, indicating that the architecture of the surface was significantly changed. This result suggests that the surface pattern affected the “lotus effect” more than the average surface roughness. The plasma pre-treatment increased the effective concentration of the FAS network on the fabric, which resulted in enhanced repellency before and after repetitive washing, compared with that of the FAS-coated fabric sample without the plasma pre-treatment. Despite the fact that the plasma pre-treatment increased the concentration of the oxygen-containing functional groups on the fabric surface, this phenomenon insignificantly contributed to the adhesion ability and, consequently, the washing fastness of the FAS coating.  相似文献   

8.
The incorporation of triarylmethane dyes into sol–gel layers formed by modified silica was used for coating of textile materials. The coatings were performed with three triarylmethane dyes differ in electrical net charge and structure: The cationic dye Malachite Green, the anionic Guinea Green and the non-polar Reflex Blue 61. All coating procedures were performed using an acidic sol–gel process starting from a solution of tetraethoxysilane (TEOS) and the dye in a mixture of water and ethanol. Depositions were performed on polyester, polyamide and cotton textiles. Investigation of leaching and photobleaching fastness showed that the stability of the dyes was enhanced by incorporation into the silica layer. Sufficient leaching fastness was only achieved with the cationic dye due to direct attractive electrostatic interaction with the negatively charged silica matrix. Also the addition of a small amount of epoxysilane to the silica sols lead to an enhancement of leaching and bleaching fastness.  相似文献   

9.
In this study, Cu and Co doped Ni/Al2O3 nanocatalyst was synthesized via impregnation and sol–gel methods. The physiochemical properties of nanocatalyst were characterized by XRD, field emission scanning electron microscopy (FESEM), particle size distribution, BET, fourier transform infrared spectroscopy (FTIR), TG–DTA and energy dispersive X-ray (EDX) analysis. The samples were employed for CO2-reforming of methane in atmospheric pressure, temperature range from 550 to 850 °C, under various mixture of CH4/CO2 and different gas hourly space velocity. XRD patterns besides indicating the decline of the peaks intensity in sol–gel method, proved the potential of this procedure in diminishing the crystal size and preventing the NiAl2O4 spinel formation. Moreover, high surface area might derive of smaller particle size and uniform morphology of sol–gel prepared ones, confirmed by FESEM and BET analysis. TG–DTG analysis as well supported the higher surface area for sol–gel made ones, represented the proper calcination temperature (approximately 600 °C). Also, presence of the active phases and elemental composition of nanocatalysts determine via EDX analysis. Promoting the basicity and the adsorption rate of CO2, is attributed to the higher amount of OH groups for sol–gel prepared samples, proved by FTIR. Ni–Co/Al2O3 due to the synergetic effect of sol–gel method and cobalt addition depicted excellent characterization such as higher surface area, smaller particle size, supplying more stable support and enhanced morphology. Therefore, this nanocatalyst represented the best products yield (H2 = 98.21 and CO = 95.64), H2/CO close to unit (0.92–1.05) and stable conversion during 1,440 min stability test. So, Ni–Co/Al2O3 among all of the prepared nanocatalysts demonstrated the best catalytic performance and presented it as a highly efficient catalyst for dry reforming of methane. Despite of the stable yield of Ni–Cu/Al2O3, it depicted the lower catalytic activity and H2/CO ratio than the unprompted nanocatalysts.  相似文献   

10.
Functional antimicrobial cotton fibres were prepared in a novel two-step procedure utilising the pad-dry-cure method to apply an inorganic–organic hybrid sol–gel precursor (reactive binder, RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres. The morphology and surface composition of the modified cotton fibres were investigated by scanning electron microscopy imaging and X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy spectral analyses. The bulk concentration of Ag on the cotton fibres was determined by inductively coupled plasma mass spectroscopy, and the antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus was estimated according to the ISO 20645:2004 (E) and AATCC 100-1999 methods. The results showed that this application process yields the following important benefits: (1) the presence of the RB silica matrix increased the fibres’ capacity for adsorbing AgCl particles compared with the same fibres without RB; (2) the in situ synthesis enabled a simple and environmentally friendly preparation of AgCl particles from AgNO3 and their embedment into the fibres; (3) the AgCl particles were bound to the RB silica matrix by physical forces, which allowed for their controlled release from the fibres; (4) the capacity of the RB-modified cotton samples to hold embedded AgCl particles was sufficient to provide a 100 % bacterial reduction even after 10 repeated washing cycles; and (5) the chemical modification of the cotton fibres did not significantly change their whiteness, wettability or softness.  相似文献   

11.
Durable superhydrophobic surface on cotton fabrics has been successfully prepared by sol–gel method. Cellulose fabric was first coated with silica sol prepared with water glass and citric acid as the acidic catalyst. The silica coated fabric was then padded with hydrolyzed hexadecyltrimethoxysilane afterwards obtaining low surface energy. Water contact angle and hydrostatic pressure were used to characterize superhydrophobicity and washing durability. Scanning electron microscopy was used to characterize the surface morphology changes after certain washing times. All results showed good durable hydrophobicity on cellulose fabrics. In addition, the influence of citric acid and sodium hypophosphite (NaH2PO2) on the durability of hydrophobicity was also investigated. The durability of treated cotton improved with the increase of concentration of citric acid in the presence of NaH2PO2. It could be concluded that citric acid acted as multi-functional heterogeneous grafting chemicals to improve washing durability of hydrophobicity by forming the ester bonds between cotton fabric and silica sol and improved the durability of hydrophobicity.  相似文献   

12.
The vacuum impregnation assisted sol–gel technique is a promising and environmentally-friendly method for the inorganic modification of wood by the formation of wood-inorganic composites. However, vacuum impregnation is relatively cumbersome and time-consuming. In this study, SiO2–wood composites were prepared by an ultrasonic-assisted sol–gel method, which is an innovative and simple method. Using this method, we found an increase in the degree of silicon incorporation into the cell walls of the wood. The impregnation of silica inside the cell walls were verified by Fourier-transform infrared spectra, X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Leaching test proved that the internal cross-linking silica is stably bonded to the wood cell walls. This modified method significantly reduced the hygroscopicity of the wood and consequently improved the mechanical performance of the modified wood. Thermogravimetric and differential thermal analyses showed that the incorporation of silicon retards thermal decomposition and the complete combustion of the wood matrix and it enhances the thermal stability of wood.  相似文献   

13.
This work presents a photo electrochemical cell based on zinc oxide (ZnO) nanoparticles and poly(acrylic) acid (PAA) doped with sodium iodide (NaI) and iodine (I2) polymer gel electrolyte. The ZnO powders were synthesized by sol–gel storage and sol–gel centrifugation. The ZnO powder synthesized via sol–gel centrifugation showed the optimal structural properties, with largest crystallite sizes of 58 nm, average particles size between 20 and 80 nm and indirect band gap energy of 3.20 eV. The highest conductivity [(8.0 ± 0.1) × 10?2 S cm?1] was obtained for PAA + 0.8 M NaI + 0.02 M I2. This sample achieved the lowest activation energy (0.029 eV) and electrochemical stability at 1.6 V. The ZnO powder synthesized via sol–gel centrifugation and PAA + 0.8 M NaI + 0.02 M I2 was fabricated as a Cu–ZnO/PAA + 0.8 M NaI + 0.02 M I2/C-ITO photo electrochemical cell.  相似文献   

14.
The organic–inorganic composite materials based on mesoporous silica were synthesized using sol–gel method. The surface area of silicas was modified by bovine serum albumin (BSA) and guanidine polymers: polyacrylate guanidine (PAG) and polymethacrylate guanidine. The mesoporous silicas were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, transmission electron microscopy. The obtained materials were used as adsorbents for selective bilirubin removal. It was shown that the structural properties and surface area of modified materials depend on the nature of polymers. Incorporation of polymers in silica gel matrix during sol–gel process leads to the formation of mesoporous structure with high pore diameter and a BET surface area equals to 346 m2/g for SiO2/BSA and 160 m2/g for SiO2/PAG. Analysis of adsorption isotherms showed that modification of silica by BSA and guanidine polymers increases its adsorption ability to bilirubin molecules. According to Langmuir model, the maximum bilirubin adsorption capacity was 1.18 mg/g.  相似文献   

15.
Modifications to the refractive indices of meso-structured organic–inorganic films caused by variations in the mole fraction of precursors in ethanolic solutions were investigated. The refractive indices were dependent on the mole fraction of C16TMS (hexadecyltrimethoxysilane) and of the C16TMS/TMOS (tetramethoxysilane) (1/1) mixture in ethanol. The dependency was determined to be nonlinear, and the phenomenon was attributed to self-assembly caused by the long alkyl groups (C16) on the C16TMS. Changes in the maximum decreasing rate of dn/dx values [(dn/dx)max—for dn/dx estimation, the curves from Fig. 1 were associated with a polynomial; using a dedicated program, dn/dx was calculated; maximum values of dn/dx were taken into account and were included in Table 1)] were used to distinguish the behavior of alcoholic precursor mixtures. In the case of using pyrene as a fluorescent probe, the ratio between two peaks from the pyrene emission spectra (I1/I3) strongly decreased as hydrophobic micro-surroundings formed due to the self-assembly process. The UV–VIS spectra of a cationic dye solution, R6G, was studied because dilute solutions of the dye in equilibrium form measurable ratios of dimers and monomers. The absorbance was modified as micro-surroundings with different polarities were formed. These three methods demonstrated that nano-structuration was present prior to the occurrence of the sol–gel process. The combination of C16TMS with other alkyltrialkoxysilane precursors having hydrocarbon chain lengths between C1 and C8 provided further evidence for a nonlinear dependence of the refractive indice and fluorescence spectra of pyrene. The properties of the final hybrids obtained by the sol–gel process were significantly affected by the precursor hydrocarbon chain lengths. DSC, XRD and FTIR measurements were used to show the plasticizing phenomena of C16 as other alkyltrialkoxysilanes (i.e., C1–C8) were added.
Fig. 1
Variation of the refractive index with the mole fraction of the precursor mixtures  相似文献   

16.
This paper focuses on the preparation of a superhydrophobic coating on glass/porcelain insulators which possess anti-icing property below freezing temperature. Inspired by lotus-effect, the fabrication of a superhydrophobic coating has two steps: the first step is to construct a hierarchical SiO2 coating on the substrate surface, and the second step is the chemical modification of the SiO2 coating with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PDTS). The precursor for the hierarchical SiO2 coating is a suspension of SiO2 sol particles and dispersible SiO2 powder particles. According to the TEM testing, SiO2 sol particles prepared by sol–gel method has an average particle size about 2–5 nm, while the size of the dispersible SiO2 particles is ca. 20 nm. The precursor was sprayed on glass/porcelain insulators, and then dried at ambient condition, finally heat-treated at 773 K for 2 h. The morphology of the superhydrophobic coating was characterized by TEM and AFM, and experimental results indicated that the coating featured [hierarchical structure consisting of both large bumps with micron-sized height (0.8 μm) and tiny papillae with the size about 30 nm] micron-sized roughness (0.8 μm) combined with nano-sized roughness (about 2 nm). Moreover, the scratch test showed that the coating tightly adhered to the surface of the glass/porcelain insulators. The superhydrophobic property of the coating was examined by a contact angle measurement, and the results demonstrated that the static water contact angle is high up to 163.6°, and the sliding angle is 1.4°. The superhydrophobic property of the coating was also confirmed by the outdoor tests in winter, and it was found that the superhydrophobic coating had the function in anti-icing, based on which the anti-icing mechanism underlying was discussed in terms of the interaction between impacting droplets and superhydrophobic surface.  相似文献   

17.
《Chemical physics letters》2003,367(1-2):102-108
The influence of modifying additives of Ce, Zr, La and Cs oxides on the electronic state of palladium supported on γ-Al2O3 has been studied by IR-spectroscopy of adsorbed CO, diffuse reflectance UV–visible spectroscopy, X-ray diffraction (XRD) and H2 chemisorption. The modified supports have been prepared using impregnation, coprecipitation and sol–gel methods. It is established that Ce and Zr oxide additives increase the effective charge of palladium ions whereas La and Cs oxides lower it. The effect of metal–support interaction is stronger in samples prepared by sol–gel than by coprecipitation  相似文献   

18.
Superhydrophobic surfaces have application in self-cleaning, anti-fouling and drag reduction. Most superhydrophobic surfaces are constructed using complex fabrication methods. An alternative method is to use sol–gel methods to make hydrophobic aerogel and xerogel surfaces. In this work, hydrophobic silica aerogels and xerogels were made from the silica precursors tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS) in volume ratios MTMS/TMOS of 0–75 % using a base-catalyzed recipe. Overall hydrophobicity was assessed using contact angle measurements on surfaces prepared from crushed aerogel and xerogel powders. The surfaces made from aerogels were super-hydrophobic (with contact angles of 167°–170°) for all levels of MTMS (10–75 %). Of the xerogel-coated surfaces, those made with 50 % MTMS were hydrophobic and with 75 % MTMS were superhydrophobic. Chemical hydrophobicity was assessed using Fourier transform infrared spectroscopy, which showed evidence of Si–CH3 and Si–C bonds in the aerogels and xerogels made with MTMS. Morphological hydrophobicity was assessed using SEM imaging and gas adsorption. The drag characteristics of the aerogel- and xerogel-coated surfaces were measured using a rotational viscometer. Under laminar flow conditions all of the hydrophobic aerogel-coated surfaces (10–75 % MTMS) were capable of capturing an air bubble, thereby reducing the drag on a horizontal rotating surface by 20–30 %. Of the xerogel-coated surfaces, only the one made from 75 % MTMS could capture a bubble, which led to 27 % drag reduction. These results imply that morphological differences between silica aerogels and xerogels, rather than any differences in their chemical hydrophobicity, give rise to the observed differences in hydrophobicity and drag reduction for the sol–gel-coated surfaces.  相似文献   

19.
A sol–gel based hybrid process was developed by manipulating different techniques in sol–gel process to synthesize γ-alumina and (CuO, CuO + ZnO) doped γ-alumina spherical particles. Catalysts having spherical geometry have an important advantage over powders or pellets which are impervious to fluids, when packed in a reactor. Boehmite sol was used as alumina precursor for synthesizing porous γ-alumina and doped materials. γ-alumina particles having 5 wt% CuO, 4 wt% CuO + 1 wt% ZnO, 3 wt% CuO + 2 wt% ZnO and 2 wt% CuO + 3 wt% ZnO were prepared by adding required amounts of Cu(NO3)2 and Zn(NO3)2 solutions prior to gelation of the sol. Methanol dehydration studies were carried out by employing these synthesized catalysts. Hundred percent conversion of methanol to dimethyl ether was observed with (4 wt% CuO + 1 wt% ZnO)-γ-alumina and (5 wt% CuO)-γ-alumina microspheres at 325 and 350 °C, respectively.  相似文献   

20.
The flame retardancy properties of cotton have been enhanced by exploiting an optimized multistep sol–gel process, consisting of a pre-hydrolysis step, followed by consecutive depositions of hybrid phosphorus-doped silica layers, using DPTS as precursor of the oxidic phases. Upon optimization, it has been demonstrated that just one phosphorus-doped silica layer is able to strongly reduce the heat release rate (?52 %), and the total smoke release (?56 %) and its rate (?62 %) with respect to the untreated fabric. In addition, the deposition of three layers allows achieving a higher flammability resistance if compared to a single layer, as indicated by the final residue after the flammability tests. As far as flammability resistance is concerned, the new coatings have shown a good durability when subjected up to five washing cycles according to ISO 6330 standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号