首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose is one of the most abundant materials in nature. Besides its biological function, cellulose can be extracted from the cell wall and used in several industrial applications. Thus, it can be used in papers, pharmaceuticals, food, cosmetics and innovative materials such as nanocomposites, packaging, coatings and dispersion technology. With the aim of extending cellulose applications and producing so-called “smart” materials, new functionality can be introduced by physical or chemical modifications. Taking into account that capsaicin, the active component of chili peppers, is an excellent antifungal agent, a potential new material could be obtained by chemical reaction between this active compound and cellulose. In this work, capsaicin grafting onto cellulose using polycarboxylic acid as linking agent is proposed. The reaction occurrence was corroborated by Fourier transform infrared spectroscopy and UV–Vis spectrophotometry in reflectance mode. Modified cellulose with <2 wt% of capsaicin shows a strong change in antifungal activity with respect to the unmodified one. This activity was evaluated by the fungal growth inhibition test with two different fungi, Trametes versicolor and Gloeophyllum trabeum. Modified cellulose samples showed a high percentage of fungal growth inhibition, demonstrating the success of the cellulose modification and high antifungal power of the grafting molecule.  相似文献   

2.
Abstract

White rot Basidiomycetes were able to biodegrade styrene (1-phenylethene) or methyl methacrylate (4-methyl-2-oxy-3-oxopent-4-ene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)] or polymethyl methacrylate [poly(1-methyl-1-(1-oxo-2-oxypropyl)ethylene)]. The biodegradation tests were run on lignin/styrene copolymerization products which contained 10.3, 32.2, and 50.4 wt% lignin while biodegradation tests were run on lignin/methyl methacrylate copolymerization products which contained 11 to 18 wt% lignin. The styrene polymer samples were incubated with white rot Pleurotus ostreatus, Phanerochaete chrysosporium, Trametes versicolor, and brown rot Gloeophyllum trabeum. The methyl methacrylate polymer samples were incubated with white rot Pleurotus ostreatus, Trametes versicolor, and Phlebia radiata. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets and polymethyl methacrylate sheets were not degradable in these tests. Degradation was verified by weight loss, quantitative ultraviolet spectrophotometric analysis of both lignin and styrene residue, and scanning electron microscopy of the plastic surface for both incubated or control samples. Brown rot fungus did not affect any of these plastics.  相似文献   

3.
A series of chlorinated phenols, derivatives of pentachlorophenol and chlorinated benzene derivatives were prepared and their toxicity to the brown-rot fungiGloeophyllum trabeum was determined in a standard ASTM 12-wk soil-block test. 2,3,5,6-Tetrachlorophenyl isocyanate and pentachlorophenyl isocyanate were synthesized, reacted with southern pine sapwood, and the extracted wood placed in the 12-wk soil-block test. Pentachlorophenol was found to be the most toxic chemical tested toGloeophyllum trabeum in the soil-block test. Pentachlorophenol is effective in eliminating attack at 0.16 lb/ft3. Acetylation of pentachlorophenol does not reduce its toxicity. Methylation of the phenol produces a methyl ether derivative that has little observed toxicity even at 1 lb/ft3. Tetrachlorophenol eliminates attack at 0.33 lb/ft3. All other partially chlorinated phenols showed little toxicity toGloeophyllum trabeum even at 1 lb/ft3. Phenol and polychlorinated benzene derivatives showed little toxicity in the soil-block tests. The bonded tetra- and pentachlorophenyl isocyanates reduced attack compared to controls, but the mechanism of effectiveness of the mechanism probably results from substrate modification and enzyme blocking rather than toxicity. The level of treatment (12 wt% gain) corresponds to 4.5 lb/ft3, or four times higher than the highest treatment for the non-bonded chemicals.  相似文献   

4.
Rapeseed meal is valuable high-protein forage, but its nutritional value is significantly reduced by the presence of a number of antinutrients, including phenolic compounds. Solid-state fermentation with white-rot fungi was used to decrease the sinapic acid concentration of rapeseed meal. After 7 days of growth of Trametes versicolor and Pleurotus ostreatus, the sinapic acid content of rapeseed meal was reduced by 59.9 and 74.5 %, respectively. At the end of the experiment, sinapic acid concentration of T. versicolor cultures decreased by 93 % of the initial value; in the case of cultures of P. ostreatus, 93.2 % reduction was observed. Moreover, cultivation of white-rot fungi on rapeseed meal resulted in the intensive production of extracellular laccase, particularly strong during the late phases of growth of T. versicolor. The obtained results confirm that both fungal species may effectively be used to decompose antinutritional phenolics of rapeseed meal. Rapeseed meal may also find use as an inexpensive and efficient substrate for a biotechnological production of laccase by white-rot fungi.  相似文献   

5.
Heavy metal oxide glasses doped with 2d transition metal niobium were casted through normal melt-quench technique in the formula composition (100?x) [3Bi2O3–7GeO2 (BGO70)]?xNb2O5 where 5 ≤ x ≤ 25. Experimentally measured values of density d exp were 6.737–7.149 g/cc ± 0.06 %. Corresponding molar volume V m exp had values 29.677–31.550 cc ± 0.04 %, V pyc varied 32.28–34.71 cc ± 0.03 % and oxygen molar volume $ V_{{{\text{mO}}^{2-} }} $ increased linearly from 17.761 to 20.467 cc ± 0.06 %. Thermal coefficient of linear expansion was between 5.316 ± 0.001 × 10?6 and 8.033 ± 0.001 × 10?6 K?1. Glass transition temperature T g, onset of crystallization temperature T x, and the stability factor ΔT were noted from DTA curves. Direct allowed energy gap E g was between 1.809–2.988 eV and Urbach energy had value 0.32–1.49 eV. Maximum transmission efficiency was 74 % for glass BGO70-Nb10. FTIR spectra revealed that lattice vibration modes were active in 400–1,300 cm?1 range. A modifying behavior was assigned to Nb5+ ion in the system.  相似文献   

6.
Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH?5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.  相似文献   

7.
X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P2 1 ; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.  相似文献   

8.
The structure of microbial cellulose (MC) produced by Acetobacter xylinum was studied in presence of Fluorescent Brightener, Direct Blue 1, 14, 15, 53, Direct Red 28, 75 and 79, as probe. X-ray diffraction pattern of the product showed that it was a crystalline complex of dye and cellulose. The product has the structure in which the monomolecular layer of the dye molecule is included between the cellulose sheets corresponding to the ( $ 1\bar{1}0 $ ) planes of microbial cellulose. As a result of dye inclusion, d-spacing of lower angle plane (100) of products becomes 8.0–8.8 Å instead of 6.1 Å of MC. The d-spacing for the higher angle plane must be (010) plane due to stronger van der Waals forces between the pyranose rings which reduced 5.3 Å space of (110) plane of MC to 3.9–4.5 Å in the product. However, cellulose regenerated from FB, DR28 products was cellulose I and IV, respectively, and that from each DB1, 14, 15, 53, DR75 and 79 products was cellulose II. Solid state 13C NMR and deuteration-IR showed the product was non-crystalline which was contrasted to X-ray results. The regenerated celluloses were cellulose Iβ, IVI and II, respectively. Thus the structure of the product depends on the characteristics of dye which affects the conformation of cellulose at the nascent stage by the direct interaction with cellulose chains. The different regenerated celluloses as well as different fine structure in the same cellulose allomorph were produced depending mainly on number and position of the sulfonate groups in the dye.  相似文献   

9.
Purified laccase from Trametes polyzona WR710-1 was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT) was studied. The quantitative analysis by HPLC showed that bisphenol A rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 h and 4-isopropenylphenol was found as the oxidative degradation product from bisphenol A when identified by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by Trametes laccase and the percentage of decolorization increased when 2 mM HBT was added in the reaction mixture. This is the first report showing that laccase from T. polyzona is an affective enzyme having high potential for environmental detoxification, bisphenol A degradation and synthetic dye decolorization.  相似文献   

10.
The acetylcholinesterase enzyme was purified from human erythrocyte membranes using a simple and effective method in a single step. Tacrine (9-amino-1,2,3,4-tetrahydroacridine) is a well-known drug for the treatment of Alzheimer's disease, which inhibits cholinesterase. We have developed a tacrine ligand affinity resin that is easy to synthesize, inexpensive and selective for acetylcholinesterase. The affinity resin was synthesized by coupling tacrine as the ligand and l-tyrosine as the spacer arm to CNBr-activated Sepharose 4B. Acetylcholinesterase was purified with a yield of 23.5 %, a specific activity of 9.22 EU/mg proteins and 658-fold purification using the affinity resin in a single step. During purification, the enzyme activity was measured using acetylthiocholine iodide as a substrate and 5,5′-dithiobis-(2-nitrobenzoicacid) as the chromogenic agent. The molecular weight of the enzyme was determined as about 70 kDa monomer upon disulphide reduction by sodium dodecyl sulphate polyacrylamide gel electrophoresis. K m, V max, optimum pH and optimum temperature for acetylcholinesterase were found by means of graphics for acetylthiocholine iodide as the substrate. The optimum pH and optimum temperature of the acetylcholinesterase were determined to be 7.4 and 25–35 °C. The Michaelis–Menten constant (K m) for the hydrolysis of acetylthiocholine iodide was found to be 0.25 mM, and the V max was 0.090 μmol/mL/min. Maximum binding was achieved at 2 °C with pH 7.4 and an ionic strength of approximately 0.1 M. The capacity for the optimum condition was 0.07 mg protein/g gel for acetylcholinesterase.  相似文献   

11.
Monolithic macroporous zirconia was synthesized through a new method involving an epoxide-driven sol–gel method accompanied by a spontaneous phase separation. The sol–gel transition utilized inorganic salt ZrCl4 as primary precursor and propylene oxide as matrix former through a ring-opening reaction. Phase separation was induced with poly-(ethylene oxide) (PEO) and its tendency was adjusted by incorporating Mg2+/Y3+ and N-methylformamide (NFA) in starting solution. The morphology of the dried gel changed from a solid nanoporous structure through a phase separated macroporous bicontinuous structure to aggregates particles when varying Mg2+ or Y3+, NFA and PEO composition. An appropriate choice of the starting composition, by which the phase separation and gelation occurred parallel, allows the fabrication of macroporous zirconia monoliths in large dimensions (Φ = 30 mm, h = 8 mm). The skeleton of the monolithic macroporous zirconia gels possess a BET surface area of 271.7 m2/g. Accordingly, the effect and mechanisms of Mg2+, Y3+ and NFA during gelation process were proposed in detail. Moreover, Mg2+ or Y3+ might also act as stabilizer to form the magnesia or yttria stabilized tetragonal or cubic zirconia after the samples were heat-treated at high temperature (800 °C).  相似文献   

12.
A cloud point extraction coupled with high performance liquid chromatography (HPLC/UV) method was developed for the determination of Δ9-tetrahydrocannabinol (THC) in micellar phase. The nonionic surfactant “Dowfax 20B102” was used to extract and pre-concentrate THC from cannabis resin, prior to its determination with a HPLC–UV system (diode array detector) with isocratic elution. The parameters and variables affecting the extraction were investigated. Under optimum conditions (1 wt.% Dowfax 20B102, 1 wt.% Na2SO4, T?=?318 K, t?=?30 min), this method yielded a quite satisfactory recovery rate (~81 %). The limit of detection was 0.04 μg?mL?1, and the relative standard deviation was less than 2 %. Compared with conventional solid–liquid extraction, this new method avoids the use of volatile organic solvents, therefore is environmentally safer.  相似文献   

13.
An efficient and simple method to isolate and purify highly polar antioxidants from the antioxidant active site of Chirita longgangensishas been established. Firstly, the antioxidant active site was enriched with D101 macroporous resin, and then high-speed counter-current chromatography (HSCCC) was used with the two-phase solvent system ethyl acetate–n-butanol–methanol–water (5:0.1:0.5:4.5, v/v) to obtain four antioxidants in one step. They were identified as plantainoside D (28.4 mg), plantainoside B (9.5 mg), calcedarioside B (18.1 mg) and calcedarioside A (16.7 mg) by analysis of electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectra. The purities were all above 97 % as determined by HPLC. The inhibiting effects of the crude extracts, enriched fraction and the obtained compounds on superoxide anion radical, hydroxyl radical and hydrogen peroxide were determined by different chemiluminescence (CL) systems. The result shows that all of them have good antioxidant activity. However, the sequence of antioxidant abilities among compounds I–IV was different when assayed by different CL systems (superoxide anion radical, hydroxyl radical, and hydrogen peroxide). This is the first report on preparative isolation and purification of antioxidants from C. longgangensis by HSCCC combined with macroporous resin and their inhibition of free radical-induced luminol chemiluminescence.  相似文献   

14.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

15.
Degradation of Acid Orange 7 (AO7) as a model azo dye was investigated in a recirculating pilot fluidized-bed reactor by a Fenton-like process using natural magnetite (NM) and potassium persulfate (K2S2O8). Scanning electron microscopy was performed to characterize the magnetite sample. The heterogeneous Fenton-like process (NM/\({\text{S}}_{2} {\text{O}}_{8}^{2 - }\)) is a modified method owing to its enhanced mass transfer. It can be operated reliably and simply by reducing the produced iron oxide sludge in the conventional Fenton process. Degradation efficiency (DE %) of AO7 by NM/ \({\text{S}}_{2} {\text{O}}_{8}^{2 - }\) process was affected by operational parameters. The DE % of 75 % was obtained for the AO7 treatment (15 mg/L) at the desired conditions, such as pH 5, 0.2 mM \({\text{S}}_{2} {\text{O}}_{8}^{2 - }\), and 0.5 g/L NM after 120 min of reaction time. The dye degradation rate in all the experiments followed the pseudo-second-order kinetic with high correlation coefficients (R 2 ≥ 0.98). The low released iron concentration, successive reusability at milder pH and the recirculation mode with the proper mixing are the significant advantages of the NM/\({\text{S}}_{2} {\text{O}}_{8}^{2 - }\) process.  相似文献   

16.
In the present work, the temperature dependence of heat capacity of dipotassium diiron(III) hexatitanium oxide has been measured for the first time in the range from 10 to 300 K by means of precision adiabatic vacuum calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity $ C_{p}^{ \circ } (T) $ , enthalpy $ H^{ \circ } (T) - H^{ \circ } (0) $ , entropy $ S^{ \circ } (T) - S^{ \circ } (0), $ and Gibbs function $ G^{ \circ } (T) - H^{ \circ } (0) $ for the range from T → 0 to 300 K. The structure of K2Fe2Ti6O16 is refined by the Rietveld method: space group I4/m, Z = 1, a = 10.1344(2) Å, c = 2.97567(4) Å, V = 305.618(7) Å3. The high-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion.  相似文献   

17.
To understand the separation behavior of Zr(IV) in the partitioning process for high level liquid waste, a silica-based macroporous adsorbent (TODGA/SiO2-P) was prepared by impregnating N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) into a macroporous silica/polymer composite particles support (SiO2-P). Adsorption and desorption behavior of Zr(IV) from nitric acid solution onto silica-based TODGA/SiO2-P adsorbent were investigated by batch experiment. It was found that TODGA/SiO2-P showed strong adsorption affinity to Zr(IV) and this adsorption process reached equilibrium state around 6 h at 298 K. Meanwhile, HNO3 concentration had no significant effect on the adsorption of Zr(IV) above 1 M. From calculated thermodynamic parameters, this adsorption process could occur spontaneously at the given temperature and was confirmed to be an exothermic reaction. This adsorption process could be expressed by Langmuir monomolecular layer adsorption mode and the maximum adsorption capacity were determined to be 0.283 and 0.512 mmol/g for Zr(IV) at 298 and 323 K, respectively. In addition, more than 90 % of Zr(IV) adsorbed onto adsorbent could be desorbed with 0.01 M diethylenetriamine pentaacetic acid solution within 24 h at 298 K.  相似文献   

18.
In order to develop a direct separation process for trivalent minor actinides from fission products in high level liquid waste (HLLW) by extraction chromatography, a novel macroporous silica-based 2,6-bis(5,6-diisohexyl)-1,2,4-triazin-3-yl)pyridine resin (isohexyl-BTP/SiO2-P resin) was prepared. The content of isohexyl-BTP extractant in the resin was as high as 33.3 wt%. The resin exhibited much higher adsorption affinity for Am(III) in 2–3 M (mol/L) HNO3 solution over U and FP which are contained in HLLW. The kinetic data were analyzed using pseudo-second-order equation. The results suggested that the Eu(III), Gd(III), and Dy(III) adsorption was well explained by the pseudo-second-order equation. Quantitative desorption for adsorbed elements was achieved by using H2O or thiourea as eluting agents. However, the kinetics of adsorption and desorption were rather slow and this drawback needs to be resolved. Stability of the resin against HNO3 was also examined. It was found that the resin was considerably stable against ≤4 M HNO3 solution for the reasons of an extremely small leakage of the extractant into the solution from the resin and the adsorption performance keeping for rare earths in 3 M HNO3 solution.  相似文献   

19.
Cadavers can be colonized by a wide variety of bacteria and fungi. Some of these microbes could change the concentration or the metabolic pattern of drugs present in postmortem samples. The purpose of this study was to identify fungi from human postmortem material and to further assess their potential role in the metabolism of drugs. Aliquots of 252 postmortem samples (heart blood, liver, kidney, and lung) taken from 105 moderately to severely decomposed bodies were streaked on Sabouraud agar for isolation of fungal species. One part of the samples was worked up immediately after autopsy (group I). The second part had previously been stored at ?20 °C for at least 1 year (group II). Identification of the isolates was achieved morphologically by microscopy and molecularly by polymerase chain reaction amplification and sequencing of markers allowing species identification of the respective genera. Depending on the genus, different gene fragments were used: calmodulin for Aspergillus, β-tubulin for Penicillium, translation elongation factor 1α for Fusarium, and the internal transcribed spacer region of the ribosomal DNA for all remaining genera. A total of 156 fungal strains were isolated from 62 % of the postmortem materials. By using these primers, 98 % of the isolates could be identified to the species level. The most common genera were Candida (60.0 %—six species), Penicillium (10.3 %—two species), Rhodotorula (7.1 %—one species), Mucor (6.4 %—four species), Aspergillus (3.2 %—four species), Trichosporon (3.2 %—one species), and Geotrichum (3.2 %—one species). Group I samples contained 53 % more fungal species than stored samples suggesting some fungi did not survive the freezing process. The isolated fungi might be characteristic for decomposed bodies. The proposed methodology proved to be appropriate for the identification of fungi in this type of material.  相似文献   

20.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号