首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precipitation in aqueous media of cellulose from solutions in N-methylmorpholine N-oxide (NMMO) hydrates is an important stage in the process of manufacturing of fibres, films and other cellulose objects. It is responsible for the formation of the structure of the regenerated object and their morphological characteristics significantly influence the properties of the final products. Regeneration of rather large cellulose objects was observed in situ by optical microscopy. It was found that all regenerated objects present an asymmetric structure composed of a dense skin surrounding a sub-layer characterised by the presence of finger-like voids. The porous texture of the cellulose parts between these voids is typical of the one obtained by spinodal decomposition. The morphologies of regenerated cellulose samples are described as a function of various parameters, initial cellulose solutions and composition and temperature of the aqueous regeneration bath. A mechanism of the structure formation during regeneration is proposed. P. Navard is a Member of the European Polysaccharide Network of Excellence (EPNOE), .  相似文献   

2.
Molten salt hydrates proved to be alternative solvents to cellulose. Toinvestigate the reasons for this dissolving ability, information about thesolvent–cellulose interactions is essential. As well as 13CHR NMR, 7Li NMR was used to obtain further insight into thisproblem.After comparing several molten salt hydrates, the 7Li NMR spectrarevealed a smaller shielding of the lithium cation for not dissolving than fordissolving and swelling cellulose systems. In most solvent systems theshieldingat the 7Li nuclei increases with the cellulose concentration. 2D7Li-1H HOESY NMR was successfully applied to verify thepresence of cellobiose, used as a model compound for cellulose, in the firstco-ordination sphere of the lithium cation.  相似文献   

3.
The systematic investigation of a good Ba+2- Sr+2 separation using a. cellulose powder column has given us the choice of two eluants: (a) Methanol 1.2N en HCl (gazeux) + water (vv: 1005) (b) Methanol-ether-HCl 12N (vv:75-25-5). The second one gave excellent separations, both in quantities of the order of 200 mg and in tracer amounts: Sr ? 0.001 μg-Ba ? 0.8 μg If we increase the eluting power of the solvent after the complete elution of Sr+2 (suppression of ether), we considerably reduce the time and volume needed for the Ba+2 elution. This work was done with the help of radioactive isotopes 140Ba (12.8 days) and 90Sr (25 years). At the same time, we found that the eluant used is also efficient for the separation of 140Ba and 90Sr from their respective decay products: 140La and 90Y (40h and 65h).  相似文献   

4.
This article provides an overview of various theories proposed during the past five decades to describe the enzymatic hydrolysis of cellulose highlighting the major shifts that these theories have undergone. It also describes the effect of the cellulose-binding domain (CBD) of an exoglucanase/xylanase from bacterium Cellulomonas fimi on the enzymatic hydrolysis of Avicel. Pretreatment of Avicel with CBDCex at 4 and 37°C as well as simultaneous addition of CBDCex to the hydrolytic enzyme (Celluclast, Novo, Nordisk) reduced the initial rate of hydrolysis owing to irreversible binding of CBD proteins to the substrate's binding sites. Nonetheless, near complete hydrolysis was achieved even in the presence of CBDCex. Protease treatment of both pure and CBDCex-treated Avicel reduced the substrates' hydrolyzability, perhapsowing to proteolysis of the hydrolyzing enzyme (Celluclast) by the residual Proteinase K remaining in the substrate. Better protocols for comptete removal of CBD proteins from the substrate need to be developed to investigate the effect of CBD adsorption on cellulose digestibility.  相似文献   

5.
6.
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic–inorganic hybrids. BC–silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20–30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 °C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.  相似文献   

7.
The kinetics of cellulose regeneration in acetic acid bath from cellulose–8% NaOH–water solutions and gels is studied as a function of gelation conditions, acid concentration and bath temperature. The diffusion coefficient of NaOH from cellulose solution or gel into regenerating bath was calculated. It does not depend either on gelation mode or on acid concentration. On the contrary, cellulose regeneration from non-gelled solutions is slower than from a gel. The increase in bath temperature induces diffusion coefficient increase obeying Arrhenius law. Scanning electron microscopy images of regenerated swollen-in-water freeze-dried cellulose and of the same samples dried in supercritical CO2 show highly porous morphology. CEMEF is a Member of the European Polysaccharide Network of Excellence (EPNOE), .  相似文献   

8.
9.
Cellulose–phosphate composite membranes have been prepared from bacterial cellulose membranes (BC) and sodium polyphosphate solution. The structure and thermal behavior of the new composites were evaluated by X-ray diffraction (XRD), 31P-nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and thermomechanical analysis (TMA). From XRD analyses the Iα and Iβ cellulose crystalline phases were identified together with crystalline sodium phosphate that covers the cellulose microfibrils as revealed by SEM. 31P NMR spectra show peaks assigned to Q0 and Q1 phosphate structures to be compared to the Q2 units that characterize the precursor polyphosphate. Glass transition temperature, T g, obtained from TMA curves and thermal stability obtained from TG and DSC measurements, were observed to be dependent on the phosphate content.  相似文献   

10.
In this review, homogeneous and heterogeneous grafting from cellulose and cellulose derivatives by ring-opening polymerisation (ROP) are reported. Cellulose is biorenewable and biodegradable as well as a stiff material with a relatively low specific weight, foreseen to be an excellent replacement for synthetic materials. By utilising ROP of monomers such as ε-caprolactone or l-lactide from cellulose, composite materials with new and/or improved properties can be obtained. Grafting of solid cellulose substrates, such as cotton, microfibrillated cellulose (MFC) or cellulose nanocrystals, renders cellulose that can easily be dispersed into polymer matrices and may be used as reinforcing elements to improve mechanical and/or barrier properties of biocomposites. A surface grafted polymer can also tailor the interfacial properties between a matrix and the fibrillar structure of cellulose. When derivatives of cellulose are grafted with polymers in homogenous media, amphiphilic materials with interesting properties can be achieved, anticipated to be utilised for applications such as encapsulation and release.  相似文献   

11.
Pressure–volume–temperature (PVT) measurements of α-cellulose with different water contents, were performed at temperatures from 25 to 180 °C and pressures from 19.6 to 196 MPa. PVT measurements allowed observation of the combined effects of pressure and temperature on the specific volume during cellulose thermo-compression. All isobars showed a decrease in cellulose specific volume with temperature. This densification is associated with a transition process of the cellulose, occurring at a temperature defined by the inflection point T t of the isobar curve. T t decreases from 110 to 40 °C with pressure and is lower as moisture content increases. For isobars obtained at high pressures and high moisture contents, after attaining a minimum, an increase in volume is observed with temperature that may be related to free water evaporation. PVT α-cellulose experimental data was compared with predicted values from a regression analysis of the Tait equations of state, usually applied to synthetic polymers. Good correlations were observed at low temperatures and low pressures. The densification observed from the PVT experimental data, at a temperature that decreases with pressure, could result from a sintering phenomenon, but more research is needed to actually understand the cohesion mechanism under these conditions.  相似文献   

12.
With the use of viscometry, the cloud-point method, polarization microscopy, the turbidity-spectrum method, and a polarization photoelectric apparatus, the relaxation pattern of the rheological behaviors, phase transitions, and structures of the systems hydroxypropyl cellulose–ethanol and hydroxypropyl cellulose–dimethyl sulfoxide are studied. The regions of existence of isotropic and anisotropic phases and the concentration dependence of the sizes of supramolecular particles are determined. It is found that a magnetic field increases the viscosities of solutions. The concentration dependences of viscosity and particle size are described by curves with maxima.  相似文献   

13.
Four wood pulps and a microcrystalline cellulose were dissolved in a NaOH 8%–water solution. Insoluble fractions and clear solution fractions were isolated by centrifugation and were observed by optical microscopy and transmission electron microscopy. Molecular weight distribution, carbohydrate composition and cellulose II content were measured. The dissolution of wood cellulose fibres in NaOH 8%–water solutions occurs by successive dismantlement and fragmentation steps governed by the swelling and the shearing of the original structure. The cellulose from insoluble and clear solution fractions is in both case converted in cellulose II and the insoluble fractions contain embedded mannans. Besides, the molecular weight distributions of cellulose from insoluble and clear solution fractions reveal the existence of heterogeneities in dissolution capacity of the cellulose chains, independent to the degree of polymerization, which are related to the chemical environment of the chains in the fibre structure.  相似文献   

14.
Bacterial cellulose (BC) films with different porosities have been developed in order to obtain improved mechanical properties. After 13 days of incubation of Gluconobacter xylinum bacteria in static culture, BC pellicles have been set. BC films have been compression molded after water dispersion of BC pellicles and filtration by applying different pressures (10, 50, and 100 MPa) to obtain films with different porosities. Tensile behavior has been analyzed in order to discuss the microstructure–property relationships. Compression pressure has been found as an important parameter to control the final mechanical properties of BC films where slightly enhanced tensile strength and deformation at break are obtained increasing mold compression pressure, while modulus also increases following a nearly linear dependence upon film porosity. This behavior is related to the higher densification by increasing mold compression pressure that reduces the interfibrillar space, thus increasing the possibility of interfibrillar bonding zones. Network theories have been applied to relate film elastic properties with individual nanofiber properties.  相似文献   

15.
We have developed micron-sized magnetic cellulose microspheres (MCMS), biospecifically coated with streptavidin (SA) using a novel cellulose binding domain and SA fusion protein, to harvest mRNA from eukaryotic cells and tissues. Biospecific connection between SA and MCMS exhibited significant advantages compared with traditional chemical coupling, including convenient and simple preparation, elimination of toxic compounds, and highly efficient extraction of a pure target molecule. To confirm compatibility, mRNA isolated from cell or tissue samples was used for amplification of housekeeping genes (GAPDH and β-actin) and specific target genes (two fragments VH and VL from the variable fragments of IgG and the gene encoding GLP-1 receptor). Preliminary studies predict that this novel method has potential in future developments in target gene isolation and DNA manipulation.  相似文献   

16.
Flexible nanocellulose composites with silica nanoparticle loading from 5 to 77 wt% and tunable pore size were made and characterised. The pore structure of the new composites can be controlled (100–1000 nm to 10–60 nm) by adjusting the silica nanoparticle content. Composites were prepared by first complexing nanoparticles with a cationic dimethylaminoethyl methacrylate polyacrylamide, followed by retaining this complex in a nanocellulose fibre network. High retention of nanoparticles resulted. The structural changes and pore size distribution of the composites were characterised through scanning electron microscopy (SEM) and mercury porosimetry analysis, respectively. The heavily loaded composites formed packed bed structures of nanoparticles. Film thickness was approximately constant for composites with low loading, indicating that nanoparticles filled gaps created by nanocellulose fibres without altering their structure. Film thickness increased drastically for high loading because of the new packed bed structure. Unexpectedly, within the investigated loading range, the level of the tensile index on nanocellulose mass basis remained constant, showing that the silica nanoparticles did not significantly interfere with the bonding between the cellulose nanofibres. This hierarchically engineered material remains flexible at all loadings, and its unique packing enables use in applications requiring nanocellulose composites with controlled pore structure and high surface area.  相似文献   

17.
The cellulosome, the multienzyme complex of the cellulase system ofClostridium thermocellum, that mediates the solubilization of insoluble cellulose, is strongly inhibited by the major end product, cellobiose. By combining a purified β-glucosidase fromAspergillus niger with the cellulosome, accumulated cellobiose was hydrolyzed thereby resulting in a dramatic enhancement (up to 10-fold) of cellulose degradation. The observed enhancement was expressed both in the rate and degree of solubilization of microcrystalline cellulose, compared with that observed for the unsupplemented cellulosome. Near-complete conversion of cellulose to glucose could be obtained from dense substrate suspensions (up to at least 200 g/L).  相似文献   

18.
Transformation of native cellulose species into cellulose-II polymorph through the additive Knecht compound formed under the action of 68.5% nitric acid has been studied. Probable causes of peculiar temperature effects in the course of phase transformations taking place in cellulose of various origin, crystallite dispersity, or morphologic structure are discussed. The processes of hydrolytic destruction and esterification of starting materials during their mercerization by this non-traditional agent at 20 °C and 0 °C are quantitatively characterized. In the case of mercerization of wood microcrystalline cellulose at 20 °C a decrystallizing effect due to side reactions of partial nitration is noted.  相似文献   

19.
We have investigated the steady-shear and viscoelastic properties of composite dispersions of cellulose nanofibrils (CNFs) with medium or high charge density and two different nanoclays, viz. rod-like sepiolite or plate-like bentonite. Aqueous dispersions of CNFs with medium charge density displayed significantly lower steady-state viscosity and storage modulus but higher gelation threshold compared with CNFs with high charge density. Dynamic light scattering (DLS) results showed that the apparent hydrodynamic radius of bentonite particles increased when CNFs were added, implying that CNFs adsorbed onto the amphoteric edges of the plate-like bentonite particles. The sepiolite network in CNF–sepiolite dispersions was relatively unaffected by addition of small amounts of CNFs, and DLS showed that the hydrodynamic radius of sepiolite did not change when CNFs were added. Addition of CNFs at concentrations above the gelation threshold resulted in drastic decrease of the steady-shear viscosity of the sepiolite dispersion, suggesting that the sepiolite network disintegrates and the rod-like clay particles are aligned also at low shear rate. The relative change in the rheological properties of the clay-based dispersions was always greater on addition of CNFs with high compared with medium charge density. This study provides insight into how the rheology of CNF–nanoclay dispersions depends on both the nanoclay morphology and the interactions between the nanoclay and nanocellulose particles, being of relevance to processing of nanocellulose–clay composites.  相似文献   

20.
A synthetic route is described here for novel peptide-cellulose conjugates containing O-phospho-l-serine. First, Boc-Ser(PO3Ph2) and the related dipeptides, Boc-Ser(PO3Ph2)-Asp(OBzl) and Boc-Asp(OBzl)-Ser(PO3Ph2), were synthesized by adopting the phosphoryl-protection strategy. The condensation reaction between the α-carboxyl group of the protected Boc-Ser(PO3Ph2) and the β-amino groups of β-Ala-Cellulose using isobutyl chloroformate and N-methylmorpholine yielded the product conjugate, N β -[Boc-Ser(PO3Ph2)]-β-Ala-Cellulose. The degree of substitution of Boc-Ser(PO3Ph2) towards the β-amino groups of β-Ala-Cellulose was estimated as DS N  = 0.75 (maximum, 1.0). Similar reactions between β-Ala-Cellulose and two kinds of protected dipeptides, Boc-Asp(OBzl)-Ser(PO3Ph2) and Boc-Ser(PO3Ph2)-Asp(OBzl), gave the corresponding conjugates, and the DS N was estimated to be 0.95 and 0.69, respectively. The phenyl, benzyl, and Boc groups were removed in one-pot using the Pt2O catalyst in 50 % trifluoroacetic acid/acetic acid. The 31P-NMR and UV–Visible spectra indicated the complete deprotection without any observable elimination of the phosphorylated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号