首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Different approaches towards hydrophobic modification of bacterial cellulose aerogels with the alkyl ketene dimer (AKD) reagent are presented. If AKD modification was performed in supercritical CO2, an unexpectedly high degree of loading was observed. About 15 % of the AKD was bound covalently to the cellulose matrix, while the other part consisted of re-extractable AKD-carbonate oligomers, which are novel chemical structures described for the first time. These oligomers contain up to six AKD and CO2 moieties linked by enolcarbonate structures. The humidity uptake from environments with different relative humidity by samples equipped with up to 30 % AKD is strongly reduced, as expected due to the hydrophobization effect. Samples above 30 % AKD, and especially at very high loading between 100 and 250 %, showed the peculiar effect of increased humidity uptake which even exceeded the value of unmodified bacterial cellulose aerogels.  相似文献   

2.
In order to produce dry and hydrophobic microfibrillated cellulose (MFC) in a simple procedure, its modification with alkyl ketene dimer (AKD) was performed. For this purpose, MFC was solvent-exchanged to ethyl acetate and mixed with AKD dissolved in the same solvent. Curing at 130 °C for 20 h under the catalysis of 1-methylimidazole yielded a dry powder. Scanning electron microscopy of the powder indicated loss in nanofibrillar structure due to aggregation, but discrete microfibrillar structures were still present. Water contact angle measurements of films produced from modified and unmodified MFC showed high hydrophobicity after AKD treatment, which persisted even after extraction with THF for 8 h. The hydrophobized MFC was characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance and X-ray analysis. In summary, strong indications for the presence of AKD on the surface of MFC before and after extraction with solvent were found, but only a very small amount of covalent β-ketoester linkages between the modification agent and cellulose was revealed.  相似文献   

3.
The adaptive response of the fungus Blakeslea trispora to the oxidative stress induced by iron ions during carotene production in shake flask culture was investigated. The culture response to oxidative stress was studied by measuring the specific activities of catalase (CAT) and superoxide dismutase (SOD). The addition of 1.0 mM of FeCl3 to the medium was associated with a mild oxidative stress as evidenced by remarkable increase of the specific activities of SOD and CAT. On the other hand, the addition 5.0 mM of FeCl3 caused a strong oxidative stress resulting in a drastic decrease in carotene concentration. The oxidative stress in B. trispora changed the composition of the carotenes and caused a significant increase of γ-carotene ratio. The highest concentration of carotenes (115.0?±?3.5 mg/g dry biomass) was obtained in the basal medium without the addition of FeCl3 after 8 days of fermentation. In this case, the carotenes consisted of β-carotene (46.3 %), γ-carotene (40.1 %), and lycopene (13.6 %). The addition of 1.0 mM of FeCl3 into the medium did not change the concentration of carotenes. But, the composition of carotenes was changed with a drastic increase of γ-carotene ratio (61.6 %) and a decrease in β-carotene and lycopene ratio (31.2 and 7.2 %, respectively).  相似文献   

4.
Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2–8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.  相似文献   

5.
The increasing evidence on the differential biochemical effects of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) raises the need of n-3 highly unsaturated fatty acid concentrates with different amounts of these fatty acids. In the present work, physicochemical and enzymatic techniques were combined to obtain acylglycerols, mainly triacylglycerols (TAG), rich in n-3 fatty acids. Sardine oil was obtained by washing sardine (Sardina pilchardus) mince with a NaHCO3 solution, hydrolyzed in a KOH–ethanol solution, and concentrated with urea. The esterification reaction was performed in the stoichiometric proportion of substrates for re-esterification to TAG, with 10 % level of Rhizomucor miehei lipase based on the weight of substrates, without any solvent, during 48 h. This procedure led to approximately 88 % of acylglycerols, where more than 66 % were TAG and the concentration of n-3 fatty acids was higher than 60 %, the EPA and DHA ratio (EPA/DHA) was 4:1. The content of DHA in the unesterifed fraction (free fatty acids) increased from 20 to 54 %, while the EPA level in the same fraction decreased from 33 to 12.5 % (EPA/DHA ratio ≈1:4). Computational methods (density functional theory calculations) have been carried out at the B3LYP/6-31G(d,p) level to explain some of the experimental results.  相似文献   

6.
The mixture of polyisopirene (PI) and sodium-2-diethylhexyl sulfosuccinate /decane/water microemulsion (ME) at AOT to water molar ratio (X = 30) and droplet mass fraction (mf,drop = 0.08) was studied with dynamic light scattering and small-angle X-ray scattering (SAXS). The light scattering was used to obtain the diffusion coefficient of Brownian motion of the nano-droplets at different polymer concentrations and molecular weights (1000 and 4700) in the ME. The dynamics of the nano-droplets decreased with the increase of molecular weight (from 1000 to 4700) and concentration (from 0.01 to 0.09) of PI. The study of the structure by SAXS showed that with increase of PI (MW = 1000) mass fraction from 0.01 to 0.09 at ME, the size of the droplets changes from 4.5 to 4.3 nm and with increase of PI (MW = 4700) concentration at ME, the size of droplets changes from 4.8 to 4.4 nm. The size ratio of droplets to polymer decreased with increase of concentration and molecular weight of polymer and also the interaction between the droplets increased with increase of polymer concentration.  相似文献   

7.
In this work k0-INAA (via IAEAk0-software) has been applied on glass samples to determine major, minor and trace element concentration. As many as 50 elements were detected and quantified with 3–5 mg of 0.1 % AuAl comparator monitor (0.1 % gold–99.9 %Alumimum wire). The average concentration of SiO2, Na2O, CaO, Al2O3 and MgO ranged between 76–96 %, 11.15–12.66 %, 5.26–10.71 %, 1.13–2.73 % and 3.51–6.23 % respectively. The relative concentrations of impurity elements; Cr, Fe, Mn and Co determined from the glass samples were used to match the physical appearance (color) of the glass based on general knowledge of colored glass production. The analytical procedure was validated using SRM 610 (glass matrix) and SRM GBW07106 (rock matrix) both as control samples which indicated a relative uncertainty of 15 and 6 % respectively for SRM 610 and SRM GBW07106. The relative sensitivity at which some of the elements were detected in major, minor and trace levels have indicated, that the k0-method in instrumental neutron activation analysis using low power research reactor is a useful technique in glass analysis and could equally be used for forensic and archeological glass characterization.  相似文献   

8.
An α-galactosidase gene (gal36A4) of glycosyl hydrolase family 36 was identified in the genome of Alicyclobacillus sp. A4. It contains an ORF of 2,187 bp and encodes a polypeptide of 728 amino acids with a calculated molecular mass of 82.6 kDa. Deduced Gal36A4 shows the typical GH36 organization of three domains—the N-terminal β-sheets, the catalytic (β/α)8-barrels, and the C-terminal antiparallel β-sheet. The gene product was produced in Escherichia coli and showed both hydrolysis and transglycosylation activities. The optimal pH for hydrolysis activity was 6.0, and a stable pH range of 5.0–11.0 was found. The enzyme had a temperature optimum of 60 °C. It is specific for α-1,6-glycosidic linkages and had a K m value of 1.45 mM toward pNPGal. When using melibiose as both donor and acceptor of galactose, Gal36A4 showed the transfer ratio of 23.25 % at 96 h. With respect to acceptor specificity, all tested monosaccharides, disaccharides, and oligosaccharides except for D-xylose and L-arabinose were good acceptors for transglycosylation. Thus, Gal36A4 may find diverse applications in industrial fields, especially in the food industry.  相似文献   

9.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

10.
In this work, the crystallization process of a SiO2–3CaO·P2O5–MgO glass was studied by non-isothermal measurements using differential thermal analysis carried out at various heating rates. X-ray diffraction at room and high temperature was used to identify and follow the evolution of crystalline phases with temperature. The activation energy associated with glass transition, (E g), the activation energy for the crystallization of the primary crystalline phase (E c), and the Avrami exponent (n) were determined under non-isothermal conditions using different equations, namely from Kissinger, Matusita & Sakka, and Osawa. A complex crystallization process was observed with associated activation energies reflecting the change of behavior during in situ crystal precipitation. It was found that the crystallization process was affected by the fraction of crystallization, (x), giving rise to decreasing activation energy values, E c(x), with the increase of x. Values ranging from about 580 kJ mol?1 for the lower crystallized volume fraction to about 480 kJ mol?1 for volume fractions higher than 80 % were found. The Avrami exponents, calculated for the crystallization process at a constant heating rate of 10 °C min?1, increased with the crystallized fraction, from 1.6 to 2, indicating that the number of nucleant sites is temperature dependent and that crystals grow as near needle-like structures.  相似文献   

11.
Softwood and hardwood bleached kraft pulps (SBKP and HBKP, respectively) and highly crystalline native celluloses such as algal, tunicate, bacterial and cotton lint celluloses were dissolved in 8 % (w/v) LiCl/N,N-dimethylacetamide (DMAc) after ethylenediamine (EDA) pretreatment. Complete dissolution of SBKP and other highly crystalline native celluloses in 8 % LiCl/DMAc was achieved after solvent exchange from EDA to DMAc through methanol. Neutral sugar composition analysis showed no significant differences between the original and EDA-treated pulps. A combination of size-exclusion chromatography and multi-angle laser light scattering (SEC–MALLS) was used to analyze the cellulose solutions after dilution to 1 % (w/v) LiCl/DMAc. The 0.05 % (w/v) solutions of highly crystalline cellulose in 1 % (w/v) LiCl/DMAc contained entangled molecules, and therefore 0.025 % (w/v) cellulose solutions in 1 % (w/v) LiCl/DMAc were used in the SEC–MALLS analysis to obtain reliable conformation plots (or double-logarithmic plots of molecular mass vs. root-mean-square radius). All the cellulose samples except SBKP gave conformation plots with slope values of 0.56–0.57, showing that these cellulose molecules had random-coil conformations. In contrast, SBKP gave a slope value of 0.35, indicating that some branched structures were present in the high-molecular-mass fraction. Double-logarithmic plots of the reduced viscosities of the cellulose solutions in 1 % (w/v) LiCl/DMAc versus the molecular mass were linear, except for SBKP, also suggesting the presence of anomalous cellulose structures in SBKP.  相似文献   

12.
The experimental FTIR spectra and DSC curves of the ternary 40TeO2–(60?x)V2O5–xNiO glasses with 0 ≤ x ≤ 30 (in mol%) have been investigated. The glass transition properties that have been measured and reported in this paper, include the glass transition temperature (T g), glass transition width (ΔT g), heat capacity change at glass transition (ΔC P) and Fragility (F). Thermal stability, fragility, and glass-forming tendency of these glasses have been estimated. Also, Poisson’s ratio (μ) and IR spectra of the presented systems have been investigated, to determine relationship between chemical composition and the thermal stability or to interpret the structure of glass. In addition, Makishima and Makenzie’s theory was applied for determination of Young’s modulus, bulk modulus, and shear modulus, indicating a strong relation between elastic properties and structure of glass. In general, results of this work show that glasses with x = 0 and 30 have the highest shear and young’s modulus which make them as suitable candidate for the manufacture of strong glass fibers in technological applications; but it should be mentioned that glass with x = 30 has higher handling temperature and super resistance against thermal shock.  相似文献   

13.
The hydrothermal treatment of pentose-rich corncob under microwave irradiation was performed using SnCl4 as catalyst for furfural production in this study. The influences of the catalyst amount, reaction temperature and reaction time on the compositions of the hydrolysate and solid residue were discussed comparatively. The solid residue obtained was characterized by FTIR, XRD and SEM. The results showed that the cell wall structure of the treated corncob was destroyed to a certain extent under the function of catalysts during the treatment, and most of the hemicelluloses were released from the cell wall and entered the hydrolysate as hemicellulose-derived sugars, followed by the selective dehydration to furfural. When the temperature reached the preset value of 190 °C under microwave irradiation, the highest furfural yield of 9.0 wt% (based on the dry weight of corncob) was achieved from the one-step conversion of corncob under the microwave-assisted hydrothermal treatment with a 1 % amount of SnCl4 (based on the dry weight of corncob) and a solid-to-liquor ratio of 1:20.  相似文献   

14.
A series of novel water soluble β-cyclodextrin (βCD) polymers has been synthesized from functionalized poly(ethylene glycol) (PEG). The chemical composition of the polymers has been characterized by 1H NMR and the βCD content is found to be between 48 and 33% (w/w). The molecular weight has been determined by Size Exclusion Chromatography (SEC) and depends on the ratio between βCD and PEG, varying from 2.1 × 104 to 8.6 × 104 g mol?1. The physico chemical properties have been characterized by differential scanning calorimetry (DSC), viscometry and isothermal titration calorimetry (ITC). ITC shows that the polymers have association constants comparable to βCD with different guest molecules, indicating a good accessibility of the CDs.  相似文献   

15.
In this paper, a novel large dimension poly(n-butyl acrylate)-poly(methyl methacrylate-itaconic acid) (PBA-P(MMA-ITA)) core-shell latex particles (CSR) with diameter of 200 nm~300 nm were successfully synthesized via pre-emulsion and semi-continuous seeded emulsion polymerization process. The analysis on the surface tension and coagulation rate of polymeric system, size and distribution of latex particles indicated that the composite emulsifier of sodium dodecyl sulfonate/polyoxyethylene nonyl phenyl ether (SDS/OP-10) had the best emulsified effect. The optimal ratio of SDS/OP-10 was 1:1 and its optimum dosage was 1.0% of monomer amount. FTIR analysis results confirmed that ITA participated in the copolymerization reaction and the chemical bond between P(MMA-ITA) copolymer and PBA core existed in the interfacial of core and shell. DSC analysis results showed that the glass transition temperature (T g) of P(MMA-ITA) copolymer increased with the increase of the ITA dosage and decreased with the increase of the core shell mass ratio. TEM images revealed that CSR particles had core-shell morphology indeed, but the particles’ core-shell morphology would be changed at higher ITA dosage and core shell mass ratio. The size of CSR particles was 330 nm, and the diameter of PBA core was 290 nm. ITA content in the shell of CSR particles was analyzed by non-aqueous acid-base titration. ITA content was the highest at 6% of ITA dosage, ITA amount which chemically bonded with PBA core was the highest at 8% of ITA dosage. When the core shell mass ratio was 60/40, ITA content and ITA amount which grafted onto PBA core were both the highest. ITA content of CSR particles achieved above 1.11% in this work, and it is completely possible for using CSR particles toughening and compatibilizing polyamide 6 (PA 6).  相似文献   

16.
Naproxen (NAP) and ibuprofen (IBU) are poor water soluble anti-inflammatory drugs. A water-soluble epichlorohydrin-β-cyclodextrin polymer (β-CDEPI) was synthesized in a highly basic aqueous solution and at a molar ratio β-CD/EPI of 1:12. Drug solubility and kinetic release of NAP and IBU from the inclusion complexes they form with β-CDEPI as host was studied. Water solubility for both drugs in the presence of this polymer increased (NAP 0.28 mmol and IBU 0.40 mmol per gram of β-CDEPI). The apparent inclusion constants for both drugs in β-CDEPI were calculated from the solubility-phase diagrams with Kincl values of 4300 ± 100 L.mol? 1 for NAP and 5100 ± 300 L.mol? 1 for IBU. Kinetic release of Ibuprofen gave a pure Fick trend (t1/2) behavior. However, for Naproxen a zero order was obtained (t). These results indicate that the nature and bulkiness of the drugs are ruling these kinetic behaviors in the environment of a highly branched polymer.  相似文献   

17.
The properties and extraction for [Ni(NH3)6]2+ of anionic aqueous two-phase systems (ATPS-a) that formed in mixtures of cetyltrimethylammonium bromide (CTAB) and excess sodium dodecyl sulfate (SDS) aqueous solutions were investigated. The results showed that the properties and extraction effects were strongly affected by the surfactant concentration, the temperature of system, and the mole fraction of surfactants. The increase of temperature induces narrower phase region and larger phase volume ratio. In addition, [Ni(NH3)6]2+ was extracted into the surfactant-rich phase with higher distribution coefficient when the liquid crystal had the birefringent properties. Moreover, the distribution coefficient can be improved through reducing the concentration of surfactant from 0.15 to 0.05 mol · L?1 or increasing mole fraction of CTAB from 21.9% to 23.1%. The results showed that ATPS of cationic–anionic surfactants was efficient for [Ni(NH3)6]2+ extraction with distribution coefficients of 13.5 when the total surfactant concentration was 0.05 mol · L?1, mole fraction of CTAB was 21%, and temperature was 34°C.  相似文献   

18.
Water-insoluble β-cyclodextrin polymer (β-CDP) crosslinked by citric acid was obtained with a yield of 65% through an environment friendly synthesis procedure. FT-IR spectra disclosed that the hydroxyl groups of β-CD had reacted and condensated with the carboxyl groups of citric acid, and at the same time the structural characteristics of β-CD were essentially maintained in β-CDP. The β-CDP exhibited notable adsorption capability toward phenol (q max = 13.8 mg g?1) and especially large adsorption capability toward methylene blue (q max = 105 mg g?1). The concentration of methylene blue in water could be reduced to 0.11 mg L?1 by the β-CDP, indicating the excellent adsorption sensitivity of β-CDP toward methylene blue. The adsorption results disclosed that the interior cavity and inclusion property of β-CD were maintained in the synthesized β-CDP.  相似文献   

19.
In this study, the use of the organic fraction of municipal solid waste as an abundant and low-cost raw material for producing activated carbon was investigated. For this purpose, ZnCl2 was used as a chemical activation agent and the carbonization process took place at 800 °C in N2 atmosphere. Seven sorbents were prepared by chemical activation (pyrolysis under N2 atmosphere at temperature of 800 °C after impregnation with ZnCl2) with different ratios of ZnCl2. The optimum ratio of organic fraction of municipal solid waste to ZnCl2 was inspected via methylene blue number and iodine number (ASTM Designation: D4607–94). The results showed that the adsorbent with 60 % ZnCl2/raw material was the most appropriate one with a satisfactory adsorption capacity, 112.4 mg g?1 for methylene blue and 134.0 mg g?1 for iodine. In addition, the structural analysis of this sorbent was performed using FT-IR, BET surface area, SEM–EDX and thermal analysis. Application of this sorbent to remove Cr(VI) from wastewater was studied to find an adsorption capacity of 66.7 mg g?1. The experimental adsorption equilibrium data were fitted to Langmuir adsorption model with an acceptable adsorption capacity of 66.7 mg g?1.  相似文献   

20.
Random copolymers of polystyrene-co-polyvinyl triethoxysilane (PS-co-PVTES) were prepared via semi-batch emulsion polymerization with different feed monomer compositions and evaluated as precursors of polystyrene (PS)/silica nanocomposites. Small-angle X-ray scattering (SAXS) profiles acquired from 20 °C to 180 °C showed that, at temperatures higher than glass transition temperature (T g) of PS, the latex particles aggregate. On thermal annealing at 180 °C, silica-rich domains are formed, as corroborated by scanning electron microscopy. Infrared spectroscopy and differential scanning calorimetry analyses showed a reduction of the silanol concentration and an increase in the T g value, respectively. The silica long domain spacing, measured by SAXS, depends on the concentration of vinyl triethoxysilane (VTES) in the feed; this value varied from 35 to 57 nm when the weight ratio of the monomers (styrene/VTES) was 50:50 and 90:10, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号