首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilayer lanthanide-cyclooctatetraene organometallic clusters, Lnn(C8H8)m (Ln = Eu, Tb, Ho, Tm; n = 1-7; m = n - 1, n, n + 1) were produced by a laser vaporization synthesis method. The magnetic deflections of these organometallic sandwich clusters were measured by a molecular beam magnetic deflection technique. Most of the sandwich species displayed one-sided deflection, while some of smaller Ln-C8H8 clusters showed symmetric broadening without or with only very small (or absent) net high-field deflection. In general, the total magnetic moments, calculated from the magnitude of the beams deflections, increase with the number of lanthanide atoms (i.e., with increasing sandwich layers); however for Tb-, Ho-, and Tm-C8H8 clusters with n > 3, the suppression of the magnetic moments was observed, possibly through antiferromagnetic interactions. For Eu-C8H8 clusters, we observe a linear increase of the magnetic moments with the number of Eu atoms up to n = 7, with average magnetic moment per Eu atom around 7 muB--similar to that displayed by conventionally synthesized mononuclear EuIIC8H8 complexes, indicating that Eu atoms exist as Eu2+ ions in the full sandwich Eun(C8H8)n+1 clusters. These results suggest that Eun(C8H8)n+1 is a promising candidate for a high-spin, one-dimensional building block in organometallic magnetic materials.  相似文献   

2.
Laser photoionization and ligand photodissociation in Ln(thd)(3) (Ln = Eu, Tb, Gd; thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) are studied in a molecular beam via time-of-flight mass spectrometry. The fragmentation patterns are strongly wavelength dependent. With 355 nm excitation, the mass spectrum is dominated by Ln(2+), Ln(+), and LnO(+) fragments. The bare Ln ions are believed to arise from photoionization of neutral Ln atoms. The Ln atoms, in turn, are produced from the Ln(thd)(3) complex in a sequence of Ln reductions (through ligand-to-metal charge-transfer transitions), with each reduction being accompanied by the dissociation of a neutral ligand radical. In contrast, under visible-light (410-450 nm) excitation, a significant Ln(thd)(n)(+) signal is observed (where n = 2,3 for Ln = Tb,Gd and n = 1-3 for Ln = Eu). Thus, with visible excitation, photoionization of Ln(thd)(n) competes effectively with the Ln-reduction/ligand-dissociation sequence that leads to the dominant bare Ln-ion signal seen with 355 nm excitation. The fact that monoligated Ln(thd)(+) is observed only for Ln = Eu is interpreted in terms of the relative accessibility of an excited ligand-to-metal charge-transfer state from the ground electronic state of neutral Ln(thd).  相似文献   

3.
Electronic properties of silicon and germanium atom doped indium clusters, In(n)Si(m) and In(n)Ge(m), were investigated by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of the anions. Size dependence of ionization energy and electron affinity for In(n)Si(1) and In(n)Ge(1) exhibit pronounced even-odd alternation at cluster sizes of n = 10-16, as compared to those for pure In(n) clusters. This result shows that symmetry lowering with the doped atom of Si or Ge results in undegeneration of electronic states in the 1d shell formed by monovalent In atoms.  相似文献   

4.
The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.  相似文献   

5.
Lanthanide metal atoms, produced by laser ablation, were condensed with CH(3)F in excess Ar at 8 K. New infrared absorption bands are assigned to the first insertion CH(3)LnF and oxidative addition methylene lanthanide hydride fluoride CH(2)LnHF products on the basis of (13)C and deuterium substitution and density functional theory calculations of the vibrational frequencies. It is also possible to observe the cationic species CH(3)LnF(+) for some Ln. For Ln = Eu and Yb, only CH(3)LnF is observed. CH(3)LnF in the Ln formal +2 state is predicted to be more stable than CH(2)LnHF with the Ln in the formal +3 oxidation state. CH(3)-LnF forms a single bond between Ln and C and is a substituted methane. Similar to CH(2)-LnF(2), CH(2)-LnHF does not form a π-bond between Ln and C and is best described as a LnHF-substituted CH(3) radical, with an unpaired p electron on C weakly interacting with the unpaired f electrons on the Ln. The calculated potential energy surface for the CH(3)F + La → CH(3)-LaF/CH(2)-LaHF shows a number of intermediates and transition states on multiple paths. The reaction mechanism involves the potential formation of LaF and LaHF intermediates.  相似文献   

6.
A series of novel lanthanide polyoxomolybdates was synthesized by reaction of lanthanide cations with the Anderson type anion (TeMo(6)O(24))(6-). The polyoxometalates K(6n)(TeMo(6)O(24))(n)[(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n)[middle dot]16nH(2)O (Ln = Eu, Gd) and K(3n)[Ln(H(2)O)(5)(TeMo(6)O(24))](n)[middle dot]6nH(2)O (Ln = Tb, Dy, Ho, Er) were characterized by X-ray structure analysis, elemental analysis and IR spectroscopy. We found that the solid-state structures of Ln/(TeMo(6)O(24))(6-) compounds are strongly dependent on the lanthanide cations, and therefore represent a rare example for different arrangements of building units depending on the nature of the rare earth cations. While the Eu(3+) and Gd(3+) cations achieve ninefold coordination by seven water molecules and two terminal oxygen atoms of the (TeMo(6)O(24))(6-) anions, the Tb(3+), Dy(3+), Ho(3+) and Er(3+) cations are coordinated by five water molecules, two terminal oxygen atoms and one molybdenum-bridging oxygen atom belonging to the (TeMo(6)O(24))(6-) anion. The europium and gadolinium substituted compounds contain infinite one-dimensional [(Ln(H(2)O)(7))(2)(TeMo(6)O(24))](n) chains; the terbium, dysprosium, holmium and erbium compounds contain infinite one-dimensional [Ln(H(2)O)(5)(TeMo(6)O(24))](n)(3n-) chains.  相似文献   

7.
The time-of-flight mass spectra of tris(2,2,6,6-tetramethyl-3,5-heptanedionato) lanthanide(III) [or Ln(thd)3 with Ln = Eu, Tb, Gd] produced by laser-induced multiphoton ionization in a supersonic expansion were studied as a function of laser excitation wavelength. Resonance-enhanced multiphoton ionization (REMPI), monitoring the Eu(I) ion signal from gas-phase Eu(thd)3, was observed in three distinct visible-excitation regions, corresponding to electronic absorption transitions on neutral Eu(0) atoms. The confirmation of the presence of Eu(0) atoms in the beam supports the proposed mechanism for the production of Ln atoms through sequential dissociation of neutral thd ligands from the metal following photoexcitation into ligand-to-metal charge-transfer (LMCT) states. Evidence is also presented that the LnO+ and LnOH+ fragments observed in the mass spectrum are produced via a separate, competing fragmentation pathway. The branching ratios between the two fragmentation pathways are compared for Ln(thd)3 (Ln = Eu, Tb, Gd). The ligand-dissociation pathway that produces Ln atoms appears to be more favorable in Ln(thd)3 complexes with low-lying LMCT states. Finally, the observation of the Tb2(thd)6+ dimer and its associated fragmentation pattern, as well as the presence of metal carbides, which are relevant to carbon contamination in chemical vapor deposition, is discussed.  相似文献   

8.
Anionic lanthanide chloride clusters, Ln(n)Cl(3n+1)(-), were produced by electrospray ionization (ESI) of LnCl(3) in isopropanol, where Ln = La-Lu (except Pm); the clusters were characterized using a quadrupole ion trap mass spectrometer. High-abundance "magic number" clusters were apparent at n = 4 for the early Ln (La-Sm), and at n = 5 for the late Ln (Dy-Lu). Density functional theory computations of La(n)Cl(3n+1)(-) and Lu(n)Cl(3n+1)(-) clusters (n = 1-6) indicate that the clusters with n = 4-6 are rings with a central chlorine atom. Computed structures show six-coordinate Ln in distorted octahedral sites in "magic number" La(4)Cl(13)(-) and Lu(5)Cl(16)(-), which have particularly large dissociation energies. For lanthanum, larger anionic chloride clusters with multiple charges of down to -5 were observed; their fragmentation by collision-induced dissociation in the ion trap revealed La(4)Cl(13)(-) as a common product. Gas-phase hydrolysis to Ln(n)Cl(3n+1-y)(OH)(y)(-) (y = 1, 2) was prevalent for the late lanthanides, but only for small clusters, n = 2 or 3; larger clusters were evidently resistant to gas-phase hydrolysis. ESI of selected LnBr(3) and LnI(3) resulted in Ln(n)X(3n+1)(-) clusters (X = Br, I)--in contrast to Ln(n)Cl(3n+1)(-) clusters, the only observed (minor) high-abundance clusters were La(4)Br(13)(-) and Ce(4)Br(13)(-).  相似文献   

9.
In this study the chemical alterations of poly(tetrafluoroethylene) (TFE Teflon) by approximately 1.0-keV electrons and 1.0-keV He and Ar ions have been examined using X-ray photoelectron spectroscopy (XPS). The initial F/C atom ratio of 1.99 decreases to a steady-state value of 1.48 after 48 h of electron exposure. Exposure to either He+ or Ar+ decreases the initial F/C atom ratio from approximately 2 to a steady-state value of 1.12. The high-resolution XPS C 1s data indicate that new chemical states of carbon form as the F is removed and that the relative amounts of these states depend on the F content of the near-surface region. These states are most likely due to C bonded only to one F atom, C bonded only to other C atoms and C that have lost a pair of electrons through emission of F-. Exposures of the electron-damaged and He+- or Ar+-damaged surfaces to research-grade O2 result in chemisorption of very small amounts of O indicating that large quantities of reactive sites are not formed during the chemical erosion. Further exposure to the electron or ion fluxes quickly removes this chemisorbed oxygen. Exposure of the He+-damaged surface to air at room temperature results in the chemisorption of a larger amount of O than the O2 exposure but no N is adsorbed. The chemical alterations due to electrons and ions are compared with those caused by hyperthermal (approximately 5 eV) atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. The largest amount of damage is caused by AO followed by VUV, inert-gas ions, and then electrons.  相似文献   

10.
余玉叶 《化学研究》2006,17(1):16-19
合成了双水杨醛缩1,10-癸二胺Sch iff碱配体(C24H32N2O2,以L表示)与稀土Ln3+的15种新的固体配合物[LnL(NO3)3].nH2O(Ln=La,Ce,Pr,Nd,Sm,Eu,n=0;Ln=Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,n=1).利用元素分析、摩尔电导、红外光谱、热分析等方法进行表征.中心金属离子Ln3+与Sch iff碱配体中的酚羟基氧以及硝酸根中的氧发生配位,配位数为8.  相似文献   

11.
The novel mixed-valence alkoxide [Eu3+(4)Eu2+O(OPri)12(HOPri)]HOPri (1) has been prepared and structurally and spectroscopically characterized. The three synthesis routes (i) metathesis of 4EuCl3, EuI2, and 14KOPri combined with hydrolysis with 1H2O, (ii) oxidation of 5[Eu4(OPri)10(HOPri)3]2HOPri with 1.5O2, and (iii) reduction of Eu5O(OPri)13 with 0.8[Eu4(OPri)10(HOPri)3]2HOPri all yielded pure 1, whereas (iv) reduction of Eu5O(OPri)13 with 0.36-0.5 mol of europium metal produced impure 1. The compound, having the average Eu oxidation number +2.8, is very sensitive toward further oxidation to Eu5O(OPri)13 and is part of a redox series of europium 2-propoxides with average oxidation states +2.5, +2.8, and +3. The square pyramidal molecular structure, containing an oxo-oxygen atom in the basal plane, is similar to that of the well-known Ln5O(OPri)13; the main difference is the substitution of an Eu3+(-)OPri pair for an Eu2+(-)HOPri pair in the basal plane. Fourier transform infrared (FT-IR) and UV-visible spectroscopy showed that the solid-state structure was retained on dissolution in hexane and toluene-HOPri. The compound was further characterized by differential scanning calorimetry and solubility studies.  相似文献   

12.
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).  相似文献   

13.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

14.
稀土金属有机配合物的红外和拉曼光谱研究   总被引:1,自引:0,他引:1  
利用新合成的配体N,N,N′,N′-四正丁基己二酰胺Bu2NCO(CH2)4OCNBu2(TBAA)(Bu=正丁基)与一系列稀土金属硝酸盐反应,得到了一系列配合物Ln2(TBAA)3(NO3)6(Ln=La,Nd,Sm,Eu,Gd,Tb,Dy,Tm,Lu)。研究表明,该系列配合物具有相似的红外和拉曼光谱特性,有机配体以羰基中的氧通过双龄和桥连方式与Ln^3 配位,每个Ln^3 的配位数为9。  相似文献   

15.
We have used photoionization efficiency spectroscopy to determine the ionization potentials (IP) of the tantalum-carbide clusters, Ta3Cn (n = 1-3) and Ta4Cn (n = 1-4). The ionization potentials follow an overall reduction as the number of carbon atoms increases; however, the trend is not steady as expected from a simple electrostatic argument. Instead, an oscillatory behavior is observed such that clusters with an odd number of carbon atoms have higher IPs and clusters with an even number of carbon atoms have lower IPs, with the Ta4C4 cluster exhibiting the lowest IP. Excellent agreement is found with relative IPs calculated using density functional theory for the lowest energy structures, which are consistent with the development of a 2 x 2 x 2 face-centered nanocrystal. This work shows that IPs may be used as a reliable validation for the geometries of metal-carbide clusters calculated by theory. The variation in IP can also be interpreted qualitatively with application of a simple model based upon isolobal frontier orbitals.  相似文献   

16.
Two K([2.2.2]crypt) salts of lanthanide-doped semimetal clusters were prepared, both of which contain at the same time two types of ternary intermetalloid anions, [Ln@Sn(7)Bi(7)](4-) and [Ln@Sn(4)Bi(9)](4-), in 0.70:0.30 (Ln = La) or 0.39:0.61 (Ln = Ce) ratios. The cluster shells represent nondeltahedral, fullerane-type arrangements of 14 or 13 main group metal atoms that embed the Ln(3+) cations. The assignment of formal +III oxidation states for the Ln sites was confirmed by means of magnetic measurements that reveal a diamagnetic La(III) compound and a paramagnetic Ce(III) analogue. Whereas the cluster anions with a 14-atomic main-group metal cage represent the second examples in addition to a related Eu(II) cluster published just recently, the 13-atomic cages exhibit a yet unprecedented enneahedral topology. In contrast to the larger cages, which accord to the Zintl-Klemm-Busmann electron number-structure correlation, the smaller clusters require a more profound interpretation of the bonding situation. Quantum chemical investigations served to shed light on these unusual complexes and showed significant narrowing of the HOMO-LUMO gap upon incorporation of Ce(3+) within the semimetal cages.  相似文献   

17.
New acetamide and carbamide complexes LnI3 · 4Ur · 4H2O (Ln = La, Eu, Dy, Ho, Y; Ur is carbamide) and LnI3 · 4AA · 4H2O (Ln = Nd, Eu, Dy, Ho, Y; AA is acetamide) are synthesized. The complexes are characterized by the data of chemical analysis, IR spectroscopy, and X-ray diffraction analysis. The ligands (water, carbamide, and acetamide molecules) are coordinated by the rare-earth element atoms through the oxygen atom, and the coordination polyhedron is a distorted square antiprism. The iodide ions are not coordinated and are located in the external sphere. The structural characteristics of the complexes are compared in the series [Ln(L)4(H2O)4]I3 (Ln = La, Nd, Eu, Gd, Dy, Ho, Er; L = AA, Ur).  相似文献   

18.
A new pyridine-containing ligand, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(4)L), has been designed for the complexation of lanthanide ions. (1)H and (13)C NMR studies in D(2)O solutions show octadentate binding of the ligand to the Ln(III) ions through the nitrogen atoms of two amine groups, the oxygen atoms of four carboxylates, and the two nitrogen atoms of the pyridine rings. Luminescence measurements demonstrate that both Eu(III) and Tb(III) complexes are nine-coordinate, whereby a water molecule completes the Ln(III) coordination sphere. Ligand L can sensitize both the Eu(III) and Tb(III) luminescence; however, the quantum yields of the Eu(III)- and Tb(III)-centered luminescence remain modest. This is explained in terms of energy differences between the singlet and triplet states on the one hand, and between the 0-phonon transition of the triplet state and the excited metal ion states on the other. The anionic [Ln(L)(H2O)]- complexes (Ln=La, Pr, and Gd) were also characterized by theoretical calculations both in vacuo and in aqueous solution (PCM model) at the HF level by means of the 3-21G* basis set for the ligand atoms and a 46+4 f(n) effective core potential for the lanthanides. The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as demonstrated by paramagnetic NMR measurements (lanthanide-induced shifts and relaxation-rate enhancements). Data sets obtained from variable-temperature (17)O NMR at 7.05 T and variable-temperature (1)H nuclear magnetic relaxation dispersion (NMRD) on the Gd(III) complex were fitted simultaneously to give insight into the parameters that govern the water (1)H relaxivity. The water exchange rate (k(298)(ex)=5.0 x 10(6) s(-1)) is slightly faster than in [Gd(dota)(H2O)]- (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). Fast rotation limits the relaxivity under the usual MRI conditions.  相似文献   

19.
The lanthanide complexes LnL 2 (NO 3 ) 3 ( 3a-g ) are obtained where Ln is La, Sm, Yb, Er, Ce, Eu, Gd, and L is the diethyl ester of 2-dimethylamino-2-oxoethylphosphonic acid [(C 2 H 5 O) 2 P(O)CH 2 CON(CH 3 ) 2 ] 1 . They are characterized by elemental analysis, i.r. and NMR spectroscopy. The crystal structure of 3a is determined by single crystal X-ray diffraction. The complex is found to crystallize in the triclinic space group P 1 with a = 8.4220(17) Å, b = 11.123(2) Å, c = 17.560(4) Å, f = 87.20(3);, g = 82.27(3);, n = 76.89(3);, V = 1587.3(5) Å 3 , Z = 2, calcd = 1.614 mg/m 3 , R = 0.047, R w = 0.107, S = 1.034 for 5762 reflections with I > 2 (I). The structure contains monomeric units of the complex with the lanthanum atom coordinated by 10 oxygen atoms, six of them from the three bidentate nitrate ions and four from the two phosphonate ligands. The coordination is realized by both phosphoryl and amide-carbonyl oxygen atoms. The stereochemistry of the starting ligand 1 is investigated by NMR spectroscopy.  相似文献   

20.
We have used photoionization efficiency spectroscopy to determine ionization potentials (IP) of the niobium-carbide clusters, Nb3C(n) (n = 1-4) and Nb4C(n) (n = 1-6). The Nb3C2 and Nb4C4 clusters exhibit the lowest IPs for the two series, respectively. For clusters containing up to four carbon atoms, excellent agreement is found with relative IPs calculated using density functional theory. The lowest energy isomers are mostly consistent with the development of a 2 x 2 x 2 face-centered cubic structure of Nb4C4. However, for Nb3C4 a low-lying isomer containing a molecular C2 unit is assigned to the experimental IP rather than the depleted 2 x 2 x 2 nanocrystal isomer. For Nb4C5 and Nb4C6, interpretation is less straightforward, but results indicate isomers containing molecular C2 units are the lowest in energy, suggesting that carbon-carbon bonding is preferred when the number of carbon atoms exceeds the number of metal atoms. A double IP onset is observed for Nb4C3, which is attributed to ionization from the both the lowest energy singlet state and a meta-stable triplet state. This work further supports the notion that IPs can be used as a reliable validation for the geometries of metal-carbide clusters calculated by theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号