首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental results of a high-power 3.8 μm tunable laser are presented on a quasi-phase-matched single-resonated optical parametric oscillator in PPMgO:CLN pumped by a 1064 nm laser of an elliptical beam. Theoretical analyses of the PPMgO:CLN wavelength tuning are presented. The pump source was an acousto-optical Q-switched cw-diode-side-pumped Nd:YAG laser. The beam polarization matched the e-ee interaction in PPMgO:CLN. When the crystal was operated at 90 °C and the pump power was 150 W with a repetition rate of 10 kHz, average output power of 22.6 W at 3.86 μm and 63 W at 1.47 μm was obtained. The slope efficiency of the 3.86 μm laser with respect to the pump laser was 17.8%. The M2 factors of the 3.86 μm laser were 1.74 and 4.86 in the parallel and perpendicular directions, respectively. The mid-IR wavelength tunability of 3.7-3.9 μm can be achieved by adjusting the temperature of a 29.2 μm period PPMgO:CLN crystal from 200 °C to 30 °C, which basically is accorded with the theoretic calculation.  相似文献   

2.
We report a high-peak-power, high-repetition-rate diode-side-pumped Nd:YAG Q-switched intracavity optical parametric oscillator (IOPO) at 1.57μm with a type-Ⅱnon-critically phase-matched x-cut KTP crystal. The average power of 1.15 W at 1.57μm is obtained at 4.3-kHz repetition rate. The peak power of the pulses amounts to 33.4 kW with 8-ns duration. The average conversion efficiency from Q-switched 1.064-μm-wavelength input power to OPO signal output power is up to 10.5%.  相似文献   

3.
Using a double resonant KTiOPO 4 (KTP) intracavity optical parametric oscillator operating at degenerated point of 2 μm,we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal.The output tuning range is 8.42-19.52 μm,and a peak power of 834 W for type-I phase matching scheme and 730 W for type-II phase matching scheme are achieved.Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.  相似文献   

4.
A 1.8 ??m optical parametric oscillator pumped by a diode end-pumped acousto-optically Q-switched Nd:YAG is demonstrated. A 30-mm-long KTiOPO4 crystal cut with an angle of ?? = 59.4°, ?? = 0° is employed as the OPO crystal. 685 mW signal laser at 1.8 ??m is obtained at the diode pump power of 13 W and the pulse repetition rate of 25 kHz. Simultaneously, 265 mW idler emission at 2.6 ??m is obtained. The corresponded diode-to-OPO conversion efficiency is 7.3%. The pulse width of the signal and idler wave are measured to be 4.5 and 2.5 ns, respectively. This gives a peak power of 6.1 and 4.2 kW, respectively.  相似文献   

5.
We present a 3 5 μ m optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μ m laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7 4.6 μ m, is cut as θ =53.5°, φ =0°. When the pump power of 2.1-μ m polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type I phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μ m, respectively. Pulse duration is about 27 ns. Beam quality factor M 2 is better than 1.8. The tunability of 3 5 μ m can be achieved by changing the angle of the ZGP crystal.  相似文献   

6.
We present a 1.5μm continuous-wave (CW) single-frequency intracavity singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO is placed inside the ring cavity of a single-frequency 1.06μm Nd:YVO4 laser pumped by a laser diode. The device delivers a maximum single-frequency output power of 310 mW at a resonant signal wavelength of 1.57 μm. The signal wave could be tuned from 1.57 to 1.59 μm by temperature tuning of PPLN crystal over the range of 130 - 170℃.  相似文献   

7.
L.Z. Xia  H. Su  R. Zhou 《Optics Communications》2009,282(13):2564-2566
An all-solid-state mid-infrared optical parametric generator with wide tunability by using multi-grating periodically poled 5 mol.-% MgO-doped lithium niobate (MgO:PPLN) is reported. The pump source is a diode-pumped Q-switched Nd:GdVO4 laser operated at 1.342 μm with pulse width of 150 ns and repetition rate of 50 kHz. To extend the interaction length, two identical multi-grating MgO:PPLN crystals have been cascaded in the OPG system. When the incident pump average power is 10 W, the obtained maximum idler output power is 340 mW at 4.144 μm. Compared with only using one multi-grating MgO:PPLN crystal, the obtained idler output power increases by 20.1%. 4.144-4.851 μm continuous-tunable idler output is obtained with six grating periods from 29 to 31.5 μm and temperature from 40 to 200 °C. To our knowledge, this is the first time to use 1.342 μm laser as the pump source of OPG.  相似文献   

8.
A high-repetition-rate eye-safe optical parametric oscillator (OPO), using a non-critically phase-matched KTP crystal intracavity pumped by a passively Q-switched Nd:GdVO4/Cr^4+ :YAG laser, is experimentally demonstrated. The conversion efficiency for the average power is 7% from pump diode input to OPO signal output and the slope efficiency is up to 10.3%. With an incident pump power of 7,3 W, the compact intracavity OPO (IOPO) cavity, operating at 15 kHz, produces an average power of 0.57 W at 1570 nm with a pulse width as short as 6 ns. The peak power at 1570 nm is higher than 6.3 kW.  相似文献   

9.
This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.  相似文献   

10.
The operation of a continuous-wave mode-locked silver gallium selenide (AgGaSe2) optical parametric oscillator (OPO) is reported. The OPO was synchronously excited by 120-fs-long pulses of 1.55-μm radiation at a repetition rate of 82 MHz. The 1.55-μm radiation is generated by a noncritically phasematched cesium-titanyl-arsenate (CTA)-OPO pumped by a mode-locked Ti:sapphire laser. The AgGaSe2-OPO generates signal and idler radiation in the range from 1.93 μm to 2.49 μm and from 4.1 μm to 7.9 μm, respectively. Up to 67 mW of signal wave output power has been obtained. The experimentally determined pulse duration and chirp parameters are in reasonable agreement with results from a numerical model taking into account group velocity mismatch, group velocity dispersion, self phase modulation, and chirp enhancement. Received: 6 August 1999 / Revised version: 4 October 1999 / Published online: 3 November 1999  相似文献   

11.
We describe a widely tunable synchronously pumped coherent source based on the process of narrowband parametric amplification in a dispersion-shifted fiber. Using an experimental fiber with a zero-dispersion wavelength of 1590 nm and pump wavelengths of 1530 to 1570 nm yields oscillations at 1970 to 2140 nm-the longest reported wavelength for a fiber parametric oscillator. The long-wavelength oscillations are accompanied by simultaneous short-wavelength oscillations at 1200 to 1290 nm. The parametric gain is coupled to stimulated Raman scattering. For parametric oscillations close to the Raman gain peak, the two gain processes must be discriminated from each other. We devised two configurations that achieve this discrimination: one is based on the exploitation of the difference in group delay between the wavelengths where Raman and parametric gain peak, and the other uses intracavity polarization tuning.  相似文献   

12.
We report a compact and efficient LD end-pumped linearly polarized Nd:YAP laser operating at 1.34 μm. The laser system with different crystal lengths, output couplers and cavity types were compared. Based on optimizing of the pump system and laser cavity, 6.2 W laser radiation at 1341.4 nm with c-axis polarized was achieved, corresponding to an optical conversion efficiency of about 24.8% with respect to the incident pump power. The laser threshold was only about 1.3 W and the optical slope efficiency was up to 27.2%.  相似文献   

13.
We demonstrated stable pulses generation at 2 μm in a passively Q-switched thulium-doped fiber laser using a few layer graphene thin film. The maximum output power was 4.5 mW and the single pulse energy was 85 nJ at 53 kHz repetition rate, and the pulse width was about 1.4 μs. The pulse width and the repetition rate of the Q-switched fiber laser can be changed along with the pump power. To the best of our knowledge, this is the first report of graphene saturable absorber for passively Q-switched 2 μm fiber lasers.  相似文献   

14.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by direct absorption spectroscopy between 1.36 and 1.30 μm (7351-7655 cm−1) using a cryogenic cell and a series of distributed feed back (DFB) diode lasers. The investigated spectral range corresponds to the high energy part of the icosad dominated by the ν2+2ν3 band near 7510 cm−1. The positions and strengths at 81 K of 3473 transitions were obtained from the spectrum analysis. The minimum value of the measured line intensities (at 81 K) is on the order of 10−26 cm/molecule, i.e. significantly lower than the intensity cut off of the HITRAN database in the region (4×10−25 cm/molecule at 296 K). From the variation of the line strength between 81 and 296 K, the low energy values of 1273 transitions could be determined. They represent 69% and 81% of the absorbance in the region at 296 and 81 K, respectively. The obtained results are discussed in relation with the few rovibrational assignments previously reported in the region.  相似文献   

15.
Jiao Z  He G  Guo J  Wang B 《Optics letters》2012,37(1):64-66
An intracavity quasi-phase-matched optical parametric oscillator (OPO) has been developed for the purpose of generating radiation with high average power and high repetition rate in the 2 μm regime. The device is a degenerate OPO based on a 3 mm thick MgO-doped periodically poled LiNbO(3) (PPMgLN) crystal, which is pumped in turn within the cavity by a diode side-pumped, Q-switched 1 μm Nd:YAG laser operating at 10 kHz. Up to 20 W broadband 2 μm radiation can be generated with a compact configuration under the crystal temperature of 115 °C. The beam profile is close to circularly symmetric with M(2) ~ 10.  相似文献   

16.
We demonstrate an angle-tuned signal-resonated optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN) pumped by a diode-pumped Nd:YVO4 laser. 1499.8 - 1506.6 nm of signal wavelength is achieved at 140℃ by rotating a 29-μm period PPLN from 0° - 10.22° in the x-y plane while keeping the pump wave vertical to the resonator mirrors. Two pairs of the signal and idler waves of the same wavelengths can be achieved symmetrically for each pair of angles of rotation with same absolute value and opposite sign. Theoretical analyses on angle-tuned PPLN-OPO with pump wave vertical to the resonator mirrors are presented and in good agreement with our experimental results. It is also found that all interacting waves in the cavity (not inside the crystal) are always collineax for PPLN-OPO with the pump wave vertical to the resonator mirrors while phase-matching is noncollinear within the crystal.  相似文献   

17.
An experimental analysis of the influence of optical injection at 1.4 μm wavelength into two different commercial 1.55 μm DFB lasers is reported. The results demonstrate the strong dependence of the DFB behaviour on the injection parameters. Complete mode suppression or signal amplification can be obtained by varying the excitation wavelength and/or intensity, suggesting that these devices could be operated as logic ports or signal amplifiers, according to the injected signal.  相似文献   

18.
We have demonstrated a high-power intra-cavity-pumped doubly resonant optical parametric oscillator (OPO) at 2 μm with single-type II phase-matched KTP. A linearly polarized Q-switched solid-state Nd:YAG laser was used as the intra-cavity pump source, of which the output power and beam quality were improved by cascading two laser rods for compensating the thermal birefringence as well as by placing double acoustic-optical Q-switches orthogonally, and the output power of the doubly resonant OPO was studied versus the temperature of KTP and the repetition rate of the Q-switch. The output power was insensitive to the temperature of KTP in a wide range, and 70-W average power was obtained at 2 μm with the repetition rate of 5 kHz. The stability of the OPO laser was measured to be <3.5 % root mean square at the output power of 70 W for 400 s.  相似文献   

19.
A high-power continuous-wave (CW) all-solid-state Nd:GdVO4 laser operating at 1.34 μm is reported here. The laser consists of a low doped level Nd:GdVO4 crystal double-end-pumped by two high-power fiber-coupled diode lasers and a simple plane-parallel cavity. At an incident pump power of 88.8 W, a maximum CW output of 26.3 W at 1.34 μm is obtained with a slope efficiency of 33.7%. To the best of our knowledge, this is the highest output at 1.34 μm ever generated by diode-end-pumped all-solid-state lasers.  相似文献   

20.
With a non-critically phase-matched KTA crystal, a high-power intracavity optical parametric oscillator (IOPO) driven by a diode-side-pumped acousto-optically Q-switched Nd:YAG laser has been realized. The maximum average output power of 13.6 W at the signal wavelength of 1534 nm and 3 W at the idler wavelength of 3472.7 nm were obtained with the repetition rate of 18 kHz, giving the optical-optical conversion efficiency of about 5.7% from diode-power at 808 nm to OPO signal output, which was the highest conversion efficiency for intracavity KTA OPO with diode-side-pumping configurations to our best knowledge. At the highest output power of 13.6 W, the signal pulse duration of 5.46 ns was obtained, corresponding to the single pulse energy of 756 μJ and peak power of 138 kW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号