共查询到4条相似文献,搜索用时 0 毫秒
1.
Point target detection utilizing super-resolution strategy for infrared scanning oversampling system
To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches. 相似文献
2.
High resolution in space and time is becoming the new trend of thermographic inspection of equipments, therefore, the development of a fast and precise processing and data store technique of high resolution thermal image should be well studied. This article will propose a novel global compression algorithm, which will provide an effective way to improve the precision and processing speed of thermal image data. This new algorithm is based on the decay of the temperature of thermograph and the feature of thermal image morphology. Firstly, it will sort the data in space according to K-means method. Then it will employ classic fitting calculation to fit all the typical temperature decay curves. At last, it will use the fitting parameters of the curves as the parameters for compression and reconstruction of thermal image sequence to achieve the method for which the thermal image sequence can be compressed in space and time simultaneously. To validate the proposed new algorithm, the authors used two embedded defective specimens made of different materials to do the experiment. The results show that the proposed infrared thermal image sequence compression processing algorithm is an effective solution with high speed and high precision. Compared to the conventional method, the global compression algorithm is not only noise resistant but also can improve the computing speed in hundreds of times. 相似文献
3.
One of the challenges in practical subpixel motion estimation is how to obtain high accuracy with sufficient robustness to both illumination variations and additive noise. Motivated by the fact that the normalized spatial cross-correlation is invariant to illumination, we introduce a gradient-based subpixel registration method by maximizing the digital correlation (DC) function between the reference and target frames. Such DC function is remodeled with the presence of image noise, yielding that the correlation coefficient is only sensitive to noise standard variance. To fairly suppress the noise corruption, not only the target frame but also the reference one is reformulated into Taylor gradient expression with half but opposite motion vector. The final solution to motion estimates can be approximated into a closed form by reserving first-order coefficient terms of unregistered motion variables. The error trend of approximated solution is discussed. Computer simulations and actual experiments’ results demonstrate the superiority of the proposed method to the LMSE-based method and ordinary DC method when illumination variations and noise exist. Among the experiments, the influences of real subpixel translation value and noise variance degree on accuracy are studied; correspondingly, an optimized iterative idea for big translations and the recommended noise level adaptive to our method are introduced. 相似文献
4.
Infrared images are characterized by low signal-to-noise ratio and low contrast. Therefore, the edge details are easily immerged in the background and noise, making it much difficult to achieve infrared image edge detail enhancement and denoising. This article proposes a novel method of Gaussian mixture model-based gradient field reconstruction, which enhances image edge details while suppressing noise. First, by analyzing the gradient histogram of noisy infrared image, Gaussian mixture model is adopted to simulate the distribution of the gradient histogram, and divides the image information into three parts corresponding to faint details, noise and the edges of clear targets, respectively. Then, the piecewise function is constructed based on the characteristics of the image to increase gradients of faint details and suppress gradients of noise. Finally, anisotropic diffusion constraint is added while visualizing enhanced image from the transformed gradient field to further suppress noise. The experimental results show that the method possesses unique advantage of effectively enhancing infrared image edge details and suppressing noise as well, compared with the existing methods. In addition, it can be used to effectively enhance other types of images such as the visible and medical images. 相似文献