首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline and highly transparent CdS:In thin films were produced by the spray pyrolysis (SP) technique at different substrate temperatures ranging from 350 to 490 °C on glass substrates. The effect of the substrate temperature on the photovoltaic properties of the films was investigated by studying the transmittance measurements, X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) observations and the I-V plots. The transmittance measurements were used to estimate the band gap energy by the linear fit of (αhν)2 versus . The band gap energy was found to be slightly increasing with the substrate temperature. XRD diffractograms show that a phase transition from the cubic to the hexagonal phase occurs by increasing the substrate temperature, beside more orientation of crystal growth. Also they show that complex cadmium compounds are still present till Ts ≈ 460 °C after which they practically disappear. From the linear I-V plots the resistivity was estimated and found to be strongly decreasing with the substrate temperature.  相似文献   

2.
The ferromagnetism in highly transparent and intrinsically n-type conducting zinc oxide doped with 3d transition metals (TM), is predicted to be defect mediated. We investigate the generation of deep defects in n-conducting 1 μm thick ZnO:TM films (TM=Co, Mn, Ti) with a nominal TM content of 0.02, 0.20 and 2.00 at.% grown by pulsed laser deposition on a-plane sapphire substrates using deep level transient spectroscopy. We find that a defect level is generated, independent of the TM content, located 0.31 and 0.27 eV below the conduction band minimum of ZnO:Mn and ZnO:Ti, respectively. Different defect levels are generated in dependence on the Co content in ZnO:Co. This work shows that an optimization of defect-related ferromagnetism in n-conducting ZnO:TM thin films will only be possible if the preparation sensitive formation of deep defects is controlled in the same time.  相似文献   

3.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

4.
We have prepared a series of ZnO films with various concentrations of Fe dopant by using facing-target magnetron sputtering system and investigated their structure, morphology, optical properties and magnetic properties by means of the X-ray diffraction, Raman spectrometer, X-ray photoelectron spectroscopy, scanning electron microscope, UV-vis spectrophotometer, spectrofluorophotometer and vibrated sample magnetometer, respectively. The results showed Fe was in 2+ valence state in film. With increasing the concentration of Fe dopant the crystal quality deteriorated gradually and an increasing compressive stress occurred in ZnO films. All the grains grew with a columnar form along the [0 0 2] direction and the average size of grains decreased monotonically as the concentration of Fe dopant increased. The calculated results indicated that the band gap of films decreased with the increment of the concentration of Fe dopant, which resulted in the red-shift of violet emission peak. Moreover, the intensity of violet emission peak increased with the increment of Fe concentration because of the interface trap existing in depletion regions located at the ZnO grains boundaries. When the concentration of Fe dopant was smaller than 0.028, the films exhibited paramagnetic properties while the films displayed weak ferromagnetic properties when the concentration of Fe dopant increased to 0.041.  相似文献   

5.
Transparent conducting zinc oxide thin films were prepared by spray pyrolytic decomposition of zinc acetate onto glass substrates with different thickness. The crystallographic structure of the films was studied by X-ray diffraction (XRD). XRD measurement showed that the films were crystallized in the wurtzite phase type. The grain size, lattice constants and strain in films were calculated. The grain size increases with thickness. The studies on the optical properties show that the direct band gap value increases from 3.15 to 3.24 eV when the thickness varies from 600 to 2350 nm. The temperature dependence of the electrical conductivity during the heat treatment was studied. It was observed that heat treatment improve the electrical conductivity of the ZnO thin films. The conductivity was found to increase with film thickness.  相似文献   

6.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

7.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

8.
Bismuth thin films were prepared on glass substrates with RF magnetron sputtering and the effects of deposition temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth and the coalescence of grains were observed above 393 K with field emission secondary electron microscopy. Continuous thin films could not be obtained above 448 K because of the segregation of grains. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility in exponential ways until 403 K. Resistivity of sputter deposited bismuth films has its minimum (about 0.7 × 10−3 Ω cm) in range of 403-433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to the cancellation of the decrease of carrier density and the increase of mobility. However, the abrupt change of electrical properties of film annealed above 523 K was observed, which is caused by the oxidation of bismuth layer.  相似文献   

9.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

10.
Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films.  相似文献   

11.
Silicon carbonitride (SiCN) thin films were deposited on n-type Si (1 0 0) and glass substrates by reactive magnetron sputtering of a polycrystalline silicon target in a mixture of argon (Ar), nitrogen (N2) and acetylene (C2H2). The properties of the films were characterized by scanning electron microscope with an energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and ultraviolet-visible spectrophotometer. The results show that the C2H2 flow rate plays an important role in the composition, structural and optical properties of the films. The films have an even surface and an amorphous structure. With the increase of C2H2 flow rate, the C content gradually increases while Si and N contents have a tendency to decrease in the SiCN films, and the optical band gap of the films monotonically decreases. The main bonds are Si-O, N-Hn, C-C, C-N, Si-N, Si-C and Si-H in the SiCN films while the chemical bonding network of Si-O, C-C, C-O, C-N, N-Si and CN is formed in the surface of the SiCN films.  相似文献   

12.
Influence of both substrate temperature, Ts, and annealing temperature, Ta, on the structural, electrical and microstructural properties of sputtered deposited Pt thin films have been investigated. X-ray diffraction results show that as deposited Pt films (Ts = 300, 400 °C) are preferentially oriented along (1 1 1) direction. A little growth both along (2 0 0) and (3 1 1) directions are also noticed in the as deposited Pt films. After annealing in air (Ta = 500-700 °C), films become strongly oriented along (1 1 1) plane. With annealing temperature, average crystallite size, D, of the Pt films increases and micro-strain, e, and lattice constant, a0, decreases. Residual strain observed in the as deposited Pt films is found to be compressive in nature while that in the annealed films is tensile. This change in the strain from compressive to tensile upon annealing is explained in the light of mismatch between the thermal expansion coefficients of the film material and substrate. Room temperature resistivity of Pt films is dependant on both the Ts and Ta of the films. Observed decrease in the film resistivity with Ta is discussed in terms of annihilation of film defects and grain-boundary. Scanning electron microscopic study reveals that as the annealing temperature increases film densification improves. But at an annealing temperature of ∼600 °C, pinholes appear on the film surface and the size of pinhole increases with further increase in the annealing temperature. From X-ray photoelectron spectroscopic analysis, existence of a thin layer of chemisorbed atomic oxygen is detected on the surfaces of the as deposited Pt films. Upon annealing, coverage of this surface oxygen increases.  相似文献   

13.
在纯氧条件下,采用直流磁控溅射技术在单晶硅基片上沉积氧化铪(HfO2)薄膜,并研究了沉积过程中基片温度对薄膜结构和性能的影响规律。利用X射线衍射仪(XRD)和X射线能谱(XPS)表征了薄膜的晶体结构和组分,利用原子力显微镜(AFM)观察薄膜表面形貌,利用纳米力学测试系统表征了薄膜的纳米硬度和弹性模量。结果表明:磁控溅射制备的HfO2薄膜样品呈(111)择优生长,其晶粒尺寸随着基片温度的升高而增大,但其晶型并不发生转变。随着基片温度的增加,基片中的硅元素向薄膜内扩散,影响了薄膜的化学计量比。沉积薄膜的表面形貌和力学性能亦受到其结构和组分变化的影响。在200 ℃条件下制备的HfO2薄膜纯度高,O、Hf元素化学计量达到了1.99,其表面质量和力学性能均达到了最佳值,随着基片温度升高至300 ℃以上,薄膜纯度下降,表面质量和力学性能均产生劣化。  相似文献   

14.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

15.
Ga and N co-doped p-type ZnO thin films were epitaxially grown on sapphire substrate using magnetron sputtering technique. The process of synthesized Ga and N co-doped ZnO films was performed in ambient gas of N2O. Hall measurement shows a significant improvement of p-type characteristics with rapid thermal annealing (RTA) process in N2 gas flow, where more N acceptors are activated. The film rapid thermal annealed at 900 °C in N2 ambient revealed the highest carrier concentration of 9.36 × 1019 cm−3 and lowest resistivity of 1.39 × 10−1 Ω cm. In room and low temperature photoluminescence measurements of the as grown and RTA treated film, donor acceptor pair emission and exciton bound to acceptor recombination at 3.25 and 3.357 eV, respectively, were observed.  相似文献   

16.
Al-doped ZnO (AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering with a ceramic ZnO:Al2O3 (98 wt%:2 wt%) target. The origin of the high resistivity of the films at the substrate position facing the erosion area of the target was investigated. The results indicate a preferential resputtering of Zn atoms caused by the negative ions, which leads to an increase of the oxygen/metal ratio in the films. Then more Al oxides form and result in the decrease of AlZn (the main donor in the films) concentration in the films. Thus the free carrier concentration decreases badly. This is the main mechanism responsible for the high resistivity.  相似文献   

17.
The structural and luminescence related optical behaviours of Au ion implanted ZnO films grown by magnetic sputtering and their post implantation annealing behaviours in the temperature range of 100-700 °C have been investigated. Optical absorption and transmittance spectra of the films indicate that band edge of Au-implanted ZnO has shifted to high energy range and optical band gap has increased, because the sharp difference of thermal expansion induces the lattice mismatch between ZnO and SiO2. PL spectra reveal that UV and visible luminescence bands of ZnO films can be improved after thermal annealing due to recovery of defects and Au ions incorporation. Importantly, green luminescence band of 530 nm has been only observed in the Au-implanted and subsequently annealed ZnO films and it enhances with the increasing annealing temperature, which can be related to Au atoms or clusters in ZnO films. Furthermore, X-ray photoelectron spectroscopy measurements reveal that the Au0 is dominant state in Au implanted and annealed ZnO films. Possible mechanisms, such as optical transitions of Au atoms or clusters and deep level luminescence of ZnO, have been proposed for green emission.  相似文献   

18.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

19.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

20.
Single crystalline ZnO films were grown on c-plane GaN/sapphire (0 0 0 1) substrates by molecular beam epitaxy. Cr+ ions were implanted into the ZnO films with three different doses, i.e., 1 × 1014, 5 × 1015, and 3 × 1016 cm−2. The implantation energy was 150 keV. Thermal treatment was carried out at 800 °C for 30 s in a rapid thermal annealing oven in flowing nitrogen. X-ray diffraction (XRD), atomic force microscopy, Raman measurements, transmission electron microscopy and superconducting quantum interference device were used to characterize the ZnO films. The results showed that thermal annealing relaxed the stress in the Cr+ ions implanted samples and the implantation-induced damage was partly recovered by means of the proper annealing treatment. Transmission electron microscopy measurements indicated that the first five monolayers of ZnO rotated an angle off the [0 0 0 1]-axis of the GaN in the interfacial layer. The magnetic-field dependence of magnetization of annealed ZnO:Cr showed ferromagnetic behavior at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号