首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

2.
Reflection equation algebras and related Uq(\mathfrak g){U{_q}(\mathfrak g)} -comodule algebras appear in various constructions of quantum homogeneous spaces and can be obtained via transmutation or equivalently via twisting by a cocycle. In this paper we investigate algebraic and representation theoretic properties of such so called ‘covariantized’ algebras, in particular concerning their centres, invariants, and characters. The locally finite part Fl(Uq (\mathfrak g)){F_l(U{_q} (\mathfrak g))} of Uq(\mathfrak g){U{_q}(\mathfrak g)} with respect to the left adjoint action is a special example of a covariantized algebra. Generalising Noumi’s construction of quantum symmetric pairs we define a coideal subalgebra B f of Uq(\mathfrak g){U{_q}(\mathfrak g)} for each character f of a covariantized algebra. We show that for any character f of Fl(Uq(\mathfrak g)){F_l(U{_q}(\mathfrak g))} the centre Z(B f ) canonically contains the representation ring Rep(\mathfrak g){{\rm Rep}(\mathfrak g)} of the semisimple Lie algebra \mathfrak g{\mathfrak g} . We show moreover that for \mathfrak g = \mathfrak sln(\mathbb C){\mathfrak g = {\mathfrak sl}_n(\mathbb C)} such characters can be constructed from any invertible solution of the reflection equation and hence we obtain many new explicit realisations of Rep(\mathfrak sln(\mathbb C)){{\rm Rep}({\mathfrak sl}_n(\mathbb C))} inside Uq(\mathfrak sln(\mathbb C)){U_q({\mathfrak sl}_n(\mathbb C))} . As an example we discuss the solutions of the reflection equation corresponding to the Grassmannian manifold Gr(m,2m) of m-dimensional subspaces in \mathbb C2m{{\mathbb C}^{2m}}.  相似文献   

3.
Given a Banach space X and a bounded linear operator T on X, a subspace Y of X is almost invariant under T if TY í Y+F{TY\subseteq Y+F} for some finite-dimensional “error” F. In this paper, we study subspaces that are almost invariant under every operator in an algebra \mathfrak A{\mathfrak A} of operators acting on X. We show that if \mathfrak A{\mathfrak A} is norm closed then the dimensions of “errors” corresponding to operators in \mathfrak A{\mathfrak A} must be uniformly bounded. Also, if \mathfrak A{\mathfrak A} is generated by a finite number of commuting operators and has an almost invariant half-space (that is, a subspace with both infinite dimension and infinite codimension) then \mathfrak A{\mathfrak A} has an invariant half-space.  相似文献   

4.
Deep matrix algebras were originally created by Cuntz (Comm. Math. Phys. 57:173–185, 1977) and McCrimmon (2006). Further study of the associative case was done by the author in Kennedy (2004) and Kennedy (Algebr. Represent. Theory 9:525–537, 2006). In this paper, the associative algebra DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) based on a set X over a field \mathbbK{\mathbb{K}} and various of its subalgebras are studied for the purpose of determining the structure of the associated Lie algebra \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}) and its subalgebras. Several key examples of deep matrix Lie algebras are constructed. These are shown to be either simple or nearly simple depending on the cardinality of the set X. Cartan subalgebras are constructed and two of the key Lie algebras are then decomposed with respect to the adjoint action of these subalgebras. In the process, an infinite dimensional analogue to \mathfraksl2(\mathbbK)\mathfrak{sl}_2({\mathbb{K}}) is naturally realized as a key subalgebra in deep matrix Lie algebras.  相似文献   

5.
In this paper, we give a classification of Lie bialgebra structures on Lie algebras of type \mathfrak g{\mathfrak {g}} [[x]] and \mathfrak g[x]{\mathfrak g[x]}, where \mathfrak g{\mathfrak g} is a simple complex finite dimensional Lie algebra.  相似文献   

6.
7.
8.
An integral coefficient matrix determines an integral arrangement of hyperplanes in \mathbbRm{\mathbb{R}^m} . After modulo q reduction ${(q \in {\mathbb{Z}_{ >0 }})}${(q \in {\mathbb{Z}_{ >0 }})} , the same matrix determines an arrangement Aq{\mathcal{A}_q} of “hyperplanes” in \mathbbZmq{\mathbb{Z}^m_q} . In the special case of central arrangements, Kamiya, Takemura, and Terao [J. Algebraic Combin. 27(3), 317–330 (2008)] showed that the cardinality of the complement of Aq{\mathcal{A}_q} in \mathbbZmq{\mathbb{Z}^m_q} is a quasi-polynomial in ${q \in {\mathbb{Z}_{ >0 }}}${q \in {\mathbb{Z}_{ >0 }}} . Moreover, they proved in the central case that the intersection lattice of Aq{\mathcal{A}_q} is periodic from some q on. The present paper generalizes these results to the case of non-central arrangements. The paper also studies the arrangement [^(B)]m[0,a]{\hat{\mathcal{B}}_m^{[0,a]}} of Athanasiadis [J. Algebraic Combin. 10(3), 207–225 (1999)] to illustrate our results.  相似文献   

9.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

10.
We study some properties of a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice $ \mathfrak{A} $ \mathfrak{A} with the cardinality of the continuum, i.e., of an upper semilattice of m-degrees. In particular, it is shown that the quotient semilattice of such a semilattice modulo any countable ideal will be also $ \mathfrak{c} $ \mathfrak{c} -universal. In addition, there exists an isomorphism $ \mathfrak{A} $ \mathfrak{A} such that $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} will be also $ \mathfrak{c} $ \mathfrak{c} -universal. Furthermore, a property of the group of its automorphisms is obtained. To study properties of this semilattice, the technique and methods of admissible sets are used. More exactly, it is shown that the semilattice of mΣ-degrees $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} on the hereditarily finite superstructure $ \mathbb{H}\mathbb{F} $ \mathbb{H}\mathbb{F} (S) over a countable set S will be a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice with the cardinality of the continuum.  相似文献   

11.
Let S be the affine plane ${\mathbb C^2}$ together with an appropriate ${\mathbb T = \mathbb C^*}$ action. Let S [m,m+1] be the incidence Hilbert scheme. Parallel to Li and Qin (2007, Incidence Hilbert schemes and infinite dimensional Lie algebras, Hangzhou), we construct an infinite dimensional Lie algebra that acts on the direct sum $$\widetilde {\mathbb H}_{\mathbb T} = \bigoplus_{m=0}^{+\infty}H^{2(m+1)}_{\mathbb T}(S^{[m,m+1]})$$ of the middle-degree equivariant cohomology group of S [m,m+1]. The algebra is related to an infinite dimensional Heisenberg algebra. In addition, we study the transformations among three different linear bases of ${\widetilde {\mathbb H}_{\mathbb T}}$ . Our results are applied to the ring structure of the ordinary cohomology of S [m,m+1] and to the ring of symmetric functions in infinitely many variables.  相似文献   

12.
Let H2\mathbb F{{\bf H}^{\bf 2}_{\mathbb F}} denote the two dimensional hyperbolic space over \mathbb F{\mathbb F} , where \mathbb F{\mathbb F} is either the complex numbers \mathbb C{\mathbb C} or the quaternions \mathbb H{\mathbb H} . It is of interest to characterize algebraically the dynamical types of isometries of H2\mathbb F{{\bf H}^{\bf 2}_{\mathbb F}} . For \mathbb F=\mathbb C{\mathbb F=\mathbb C} , such a characterization is known from the work of Giraud–Goldman. In this paper, we offer an algebraic characterization of isometries of H2\mathbb H{{\bf H}^{\bf 2}_{\mathbb H}} . Our result restricts to the case \mathbb F=\mathbb C{\mathbb F=\mathbb C} and provides another characterization of the isometries of H2\mathbb C{{\bf H}^{\bf 2}_{\mathbb C}} , which is different from the characterization due to Giraud–Goldman. Two elements in a group G are said to be in the same z-class if their centralizers are conjugate in G. The z-classes provide a finite partition of the isometry group. In this paper, we describe the centralizers of isometries of H2\mathbb F{{\bf H}^{\bf 2}_{\mathbb F}} and determine the z-classes.  相似文献   

13.
We introduce a spanning set of Beilinson–Lusztig–MacPherson type, {A(j, r)} A,j , for affine quantum Schur algebras S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and construct a linearly independent set {A(j)} A,j for an associated algebra [^(K)]\vartriangle(n){{{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n)} . We then establish explicitly some multiplication formulas of simple generators E\vartriangleh,h+1(0){E^\vartriangle_{h,h+1}}(\mathbf{0}) by an arbitrary element A(j) in [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle(n)}} via the corresponding formulas in S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle(n, r)}} , and compare these formulas with the multiplication formulas between a simple module and an arbitrary module in the Ringel–Hall algebras \mathfrak H\vartriangle(n){{{\boldsymbol{\mathfrak H}_\vartriangle(n)}}} associated with cyclic quivers. This allows us to use the triangular relation between monomial and PBW type bases for \mathfrak H\vartriangle(n){{\boldsymbol{\mathfrak H}}_\vartriangle}(n) established in Deng and Du (Adv Math 191:276–304, 2005) to derive similar triangular relations for S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and [^(K)]\vartriangle(n){{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n) . Using these relations, we then show that the subspace \mathfrak A\vartriangle(n){{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)} of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} spanned by {A(j)} A,j contains the quantum enveloping algebra U\vartriangle(n){{{\mathbf U}_\vartriangle}(n)} of affine type A as a subalgebra. As an application, we prove that, when this construction is applied to quantum Schur algebras S(n,r){\boldsymbol{\mathcal S}(n,r)} , the resulting subspace \mathfrak A\vartriangle(n){{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}} is in fact a subalgebra which is isomorphic to the quantum enveloping algebra of \mathfrakgln{\mathfrak{gl}_n} . We conjecture that \mathfrak A\vartriangle(n){{{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}}} is a subalgebra of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} .  相似文献   

14.
A complete Boolean algebra \mathbbB{\mathbb{B}}satisfies property ((h/2p)){(\hbar)}iff each sequence x in \mathbbB{\mathbb{B}}has a subsequence y such that the equality lim sup z n = lim sup y n holds for each subsequence z of y. This property, providing an explicit definition of the a posteriori convergence in complete Boolean algebras with the sequential topology and a characterization of sequential compactness of such spaces, is closely related to the cellularity of Boolean algebras. Here we determine the position of property ((h/2p)){(\hbar)}with respect to the hierarchy of conditions of the form κ-cc. So, answering a question from Kurilić and Pavlović (Ann Pure Appl Logic 148(1–3):49–62, 2007), we show that ${``\mathfrak{h}{\rm -cc}\Rightarrow (\hbar)"}${``\mathfrak{h}{\rm -cc}\Rightarrow (\hbar)"}is not a theorem of ZFC and that there is no cardinal \mathfrakk{\mathfrak{k}}, definable in ZFC, such that ${``\mathfrak{k} {\rm -cc} \Leftrightarrow (\hbar)"}${``\mathfrak{k} {\rm -cc} \Leftrightarrow (\hbar)"}is a theorem of ZFC. Also, we show that the set { k: each k-cc c.B.a. has ((h/2p) ) }{\{ \kappa : {\rm each}\, \kappa{\rm -cc\, c.B.a.\, has}\, (\hbar ) \}}is equal to [0, \mathfrakh){[0, \mathfrak{h})}or [0, \mathfrak h]{[0, {\mathfrak h}]}and that both values are consistent, which, with the known equality {k: each c.B.a. having  ((h/2p) ) has the k-cc } = [\mathfrak s, ¥){{\{\kappa : {\rm each\, c.B.a.\, having }\, (\hbar )\, {\rm has\, the}\, \kappa {\rm -cc } \} =[{\mathfrak s}, \infty )}}completes the picture.  相似文献   

15.
Let ${\mathbb{G}}Let \mathbbG{\mathbb{G}} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \mathbbFm,r{\mathbb{F}_{m,r}} denote the free Lie group of step r and m generators. Let also p:\mathbbFm,r?\mathbbG{\pi:\mathbb{F}_{m,r}\to\mathbb{G}} be a lifting map. We show that any horizontally convex function u on \mathbbG{\mathbb{G}} lifts to a horizontally convex function u°p{u\circ \pi} on \mathbbFm,r{\mathbb{F}_{m,r}} (with respect to a suitable horizontal frame on \mathbbFm,r{\mathbb{F}_{m,r}}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian L=?j=1m Xj2{\mathcal{L}=\sum_{j=1}^m X_j^2} on a Carnot group of step two such that the relevant L{\mathcal{L}}-gauge function d (i.e., d 2-Q is the fundamental solution for L{\mathcal{L}}) is not h-convex with respect to the horizontal frame {X 1, . . . , X m }. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).  相似文献   

16.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

17.
The field of quaternions, denoted by \mathbbH{\mathbb{H}} can be represented as an isomorphic four dimensional subspace of \mathbbR4×4{\mathbb{R}^{4\times 4}}, the space of real matrices with four rows and columns. In addition to the quaternions there is another four dimensional subspace in \mathbbR4×4{\mathbb{R}^{4\times 4}} which is also a field and which has – in connection with the quaternions – many pleasant properties. This field is called field of pseudoquaternions. It exists in \mathbbR4×4{\mathbb{R}^{4\times 4}} but not in \mathbbH{\mathbb{H}}. It allows to write the quaternionic linear term axb in matrix form as Mx where x is the same as the quaternion x only written as a column vector in \mathbbR4{\mathbb{R}^4}. And M is the product of the matrix associated with the quaternion a with the matrix associated with the pseudoquaternion b.  相似文献   

18.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

19.
In this paper, it is shown that the dual [(\textQord)\tilde]\mathfrakA \widetilde{\text{Qord}}\mathfrak{A} of the quasiorder lattice of any algebra \mathfrakA \mathfrak{A} is isomorphic to a sublattice of the topology lattice á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . Further, if \mathfrakA \mathfrak{A} is a finite algebra, then [(\textQord)\tilde]\mathfrakA @ á( \mathfrakA ) \widetilde{\text{Qord}}\mathfrak{A} \cong \Im \left( \mathfrak{A} \right) . We give a sufficient condition for the lattices [(\textCon)\tilde]\mathfrakA\text, [(\textQord)\tilde]\mathfrakA \widetilde{\text{Con}}\mathfrak{A}{\text{,}} \widetilde{\text{Qord}}\mathfrak{A} , and á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.  相似文献   

20.
Let W n ( \mathbb K {\mathbb K} ) be the Lie algebra of derivations of the polynomial algebra \mathbb K {\mathbb K} [X] := \mathbb K {\mathbb K} [x 1,…,x n ]over an algebraically closed field \mathbb K {\mathbb K} of characteristic zero. A subalgebra L í Wn(\mathbbK) L \subseteq {W_n}(\mathbb{K}) is called polynomial if it is a submodule of the \mathbb K {\mathbb K} [X]-module W n ( \mathbb K {\mathbb K} ). We prove that the centralizer of every nonzero element in L is abelian, provided that L is of rank one. This fact allows one to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号