共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of trans-[Co(NH3)4(CH3NH2)Br]2+ and trans-[Co(NH3)4(CH3NH2)-(NO3)]2+ complexes is described. The UV-VIS spectra of the complexes indicate a decrease of the ligand field compared to the parent pentaammines. Infrared spectra match with the pattern of the corresponding pentaammines. The catalyzed (by Hg2+) aquation of the trans-bromomethylamine complex go under retention of the stereochemical configuration. The base hydrolysis (studied at 25°C) products show trans to cis rearrangement for both complexes. 1H NMR spectroscopy is used for identification of the stereochemical configuration of the compounds. 相似文献
2.
Carlos RM Cardoso DR Castellano EE Osti RZ Camargo AJ Macedo LG Franco DW 《Journal of the American Chemical Society》2004,126(8):2546-2555
The electronic absorption spectrum of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in aqueous solution is characterized by a strong absorption band at 334 nm (lambda(max) = 1800 mol(-1) L cm(-1)). On the basis of quantum mechanics calculations, this band has been assigned to a MLCT transition from the metal to the nitro ligand. Molecular orbital calculations also predict an LF transition at 406 nm, which is obscured by the intense MLCT transition. When trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in acetonitrile is irradiated with a 355 nm pulsed laser light, the absorption features are gradually shifted to represent those of the solventocomplex trans-[Ru(NH(3))(4)(solv)(P(OEt)(3)](2+) (lambda(max) = 316 nm, epsilon = 650 mol(-1) L cm(-1)), which was also detected by (31)P NMR spectroscopy. The net photoreaction under these conditions is a photoaquation of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+), although, after photolysis, the presence of the nitric oxide was detected by differential pulse polarography. In phosphate buffer pH 9.0, after 15 min of photolysis, a thermal reaction resulted in the formation of a hydroxyl radical and a small amount of a paramagnetic species as detected by EPR spectroscopy. In the presence of trans-[Ru(NH(3))(4)(solv)P(OEt)(3)](2+), the hydroxyl radical initiated a chain reaction. On the basis of spectroscopic and electrochemical data, the role of the radicals produced is analyzed and a reaction sequence consistent with the experimental results is proposed. The 355 nm laser photolysis of trans-[Ru(NH(3))(4)(NO(2))(P(OEt)(3)](+) in phosphate buffer pH 7.4 also gives nitric oxide, which is readily trapped by ferrihemeproteins (myoglobin, hemoglobin, and cytochrome C), giving rise to the formation of their nitrosylhemeproteins(II), (NO)Fe(II)hem. 相似文献
3.
4.
《Polyhedron》2003,22(25-26):3379-3381
We report the synthesis, characterization and cytotoxic assays of new trans-platinum compounds, trans-[PtCl2NH3(3-(hydroxymethyl)-pyridine)] and trans-[PtCl2NH3(4-(hydroxymethyl)-pyridine)]. In the present work, we found that the replacement of the ammine ligand in “classical” transplatinum with the two new ligands does not increase the cytotoxic activity, maybe because these complexes do not produce a stability of the intrastrand cross-links in DNA. 相似文献
5.
6.
O. V. Sizova N. V. Ivanova V. I. Baranovskii A. B. Nikolskii 《Journal of Structural Chemistry》1994,35(4):433-442
The electronic structure and spectra of [Ru(NH3)5pyz]2+ and [(NH3)5Ru-pyz-Ru(NH3)5]4+ are calculated by the INDO (CINDO-E/S) method. Changes in molecular orbitals, charge distributions, and bond order indices
of the pyrazine molecule and [Ru(NH3)5pyz]2+ complex in the [(NH3)5Ru-pyz-Ru(NH3)5]4+ binuclear complex are analyzed.
St. Petersburg State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 4, pp. 12–23, July–August, 1994.
Translated by. O. Kharlamova 相似文献
7.
Summary The complexestrans-[Ru(NH3)4(H2O)PPh3](PF6)2 and [Ru(NH3)5L](PF6)2, (L=AsPh3 or SbPh3) have been isolated and characterized by microanalysis, cyclic voltammetry and ultraviolet-visible spectroscopy. The specific rate constants for the aquation of [Ru(NH3)5L]2+ totrans-[Ru(NH3)4L(H2O)]2+ are (2.5±0.1)×10–5s–1 and (1.8±0.1)×10–5s–1 for L=AsPh3 and SbPh3, respectively, at 25.0±0.1°C; =0.10 mol dm–3, NaO2CCF3. Under the same conditions, the second-order rate constants for the substitution of water intrans-[Ru(NH3)4(H2O)L]2+ by isonicotinamide (isn) are 1.2±0.1, (6.3±0.3)×10–2 and (3.8±0.2)×10–2
m
–1s–1 for L=PPh3, AsPh3, and SbPh3, respectively, suggesting that the order of decreasingtrans-effect is: PPh3AsPh3>SbPh3. The formation constants for thetrans-[Ru(NH3)4L(isn)]2+ complexes are 75±3, (1.40±0.01)×103 and (1.80±0.02)×103M–1 for L=PPh3, AsPh3, and SbPh3, respectively, suggesting that the order of increasingtrans-influence is: SbPh33PPh3. 相似文献
8.
9.
Pink-brown crystalline alkali-metal trifluoromonosulphatomanganates(III), A2[MnF3(SO4)] (A = NH4, Li, Na or K), have been synthesised in high yields by reacting KMnO4 or MnO(OH) with 40% HF and A2SO4 or by the reaction of MnO(OH) with 40% HF and A2S2O8 (A = NH4 or K). The chemicallly estimated oxidation state of manganese occurs between 2.9 and 3.1, and the room temperature magnetic moments lie in the range 4.0–4.2 BM. (NH4)2[MnF3(SO4)] on being pyrolysed at 340°C yields MnSO4. 相似文献
10.
Preparation and Characterization of the Pentammine Complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ The new pentammine complexes [Os(NH3)5(NCS)]2+ and [Os(NH3)5(NCSe)]2+ are prepared from the reaction of [Os(NH3)5(CF3SO3)](CF3 SO3)2 with NH4SCN and KSeCN, respectively, in acetone, and subsequent purification by ion exchange chromatography on carboxymethyl cellulose. Evidence of N-bonding in both cases is given by the vibrational spectra, indicating that Os3+ is in terms of Lewis acidity harder than Ru3+, Rh3+, and Ir3+. I.r. and Raman spectra are interpreted according to local C4v symmetry around Os, and the presumed assignments are confirmed by comparison with the i.r. spectra of the perdeuterated compounds. In the electronic spectra of both complexes charge transfer bands at 412 nm (NCS) and 498 nm (NCSe) are observed, respectively. Further weak absorptions near 4500 and 5100 cm?1, which are in correlation with electronic Raman bands, are assigned to intraconfigurational transitions within the 2T2g (Oh) ground term, split into three Kramers doubletts by spin-orbit coupling and lowered symmetry. Electrochemical measurements demonstrate a stabilisation of +III and +II oxidation states by π-back donation to —NCS and —NCSe ligands. 相似文献
11.
Trans-[Cr(NH3)4(H2O)Cl]Cl2 (A) crystallizes in the monoclinic space group P21/m (No. 11) with a = 6.556(1), b = 10.630(5), c = 6.729(2) Å and β = 96.15(3)°. Trans-[Cr(NH3)4Cl2]I (B) has monoclinic C2/m (No. 12) space group and a = 9.877(2), b = 8.497(2), c = 6.047(2) Å and β = 108.98(2)°. Both unit cells contain two formula units. Cr? Cl, Cr? O(H2O) and three independent Cr? N(NH3) distances for A are 2.98(1), 2.023(2), 2.067(2), 2.086(3) and 2.064(3) °. Cr? Cl and Cr? N(NH3) bonds in B are 2.325(1) and 2.071(2) °. All octahedral angles are close to 90 and 180°. Both structures were refined to very low R values. Water molecule from trans-[Cr(NH3)4(H2O)Cl]2+ is hydrogen bonded to both ionic chlorides. Cation and two anions form the motive which repeats itself in the crystal. Cations and anions of the second structure are distributed in layers. Each cation and anion have coordination number eight. 相似文献
12.
Formation of NH4[Hg3(NH)2](NO3)3 and Transformation to [Hg2N](NO3) NH4[Hg3(NH)2](NO3)3 ( 1 ) and [Hg2N](NO3) ( 2 ) are obtained from conc. aqueous ammonia solutions of Hg(NO3)2 at ambient temperature and under hydrothermal conditions at 180 °C, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg3(NH)2](NO3)3: cubic, P4132, a = 1030.4(2) pm, Z = 4, Rall = 0.028; [Hg2N](NO3): tetra gonal, P43212, a = 1540.4(1), c = 909.8(1) pm, Z = 4, Rall = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 °C in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 °C forming yellow HgO. Most certainly, 1 is identical with a mineral previously analyzed as “Hg(NH2)(NO3)” with the same Hg:N:O ratio. 相似文献
13.
Aissa Gacemi Djamal Benbertal Muriel Bagieu‐Beucher Amlie Lecchi Alain Mosset 《无机化学与普通化学杂志》2003,629(14):2516-2520
Single crystals of NH4[HgCl2(SCN)] ( 1 ) and NH4[HgCl(SCN)2] ( 2 ) are obtained by slow evaporation of ethanol solutions of HgCl2 and NH4SCN or Hg(SCN)2 and NH4Cl. 1 crystallizes in the monoclinic space group P21 (a = 9.297(1), b = 4.171(1), c = 9.198(1)Å, β = 92.827(5)°). The structure consists in HgCl2(SCN) linear chains, extending along the twofold axis, connected through the ammonium ions. 2 crystallizes in the monoclinic space group C2/c (a = 7.088(1), b = 19.986(2), c = 5.958(1)Å, β = 100.718(5)°). The structure consists of HgCl(SCN)2 molecules connected through the ammonium ions. The second order non linear optical properties of 1 are discussed. 相似文献
14.
Low-temperature IR experiments on crystalline samples of trans-[Ru(NH3)4(NO) nicotinamide]3+ salts show a light-induced absorption band typical for MS1 NO linkage isomers upon exposure to 300-500 nm light from a Xe source. The formation of a metastable species is confirmed by DSC measurement on a sample irradiated at low temperature with 457 nm light from an Ar+ laser. The light-induced species decays between 250 and 260 K according to both IR and DSC results. This decay temperature (Td) is somewhat below that observed for other high-Td linkage isomers, even though the NO-stretching frequency of the of [Ru(NH3)4(NO) nicotinamide]3+ ion is above that of the other isomers, demonstrating a lack of precise correlation between the two physical properties. The 90 K crystal structure of trans-[Ru(NH3)4(NO)nicotinamide](SiF6)(NO3).H2O is reported. The geometry from theoretical DFT calculations of the ground-state structure agrees well with the experimental results, except for the orientation of the CONH2 substituent in the pyridine ring, which is rotated by 180 degrees in the crystal due to packing effects. The MS1 and MS2 linkage isomers are found to correspond to local minima on the ground-state potential energy surface, and their geometries and energies are reported. 相似文献
15.
合成了一系列新的富勒烯钌配合物.通过元素分析、紫外-可见光谱、红外光谱、光电子能谱(XPS)和13C及31PNMR等多种手段对它们进行了表征.结果表明.该系列配合物分子内存在超共轭效应,共轭电子多.离域性好.通过光伏效应装置研究了它们的光电性能,结果显示该系列配合物具有良好的光电性能. 相似文献
16.
The compound [NH4(NH3)4][B(C6H5)4].NH3 (1) was prepared by the reaction of NaB(C(6)H(5))(4) with a proton-charged ion-exchange resin in liquid ammonia. [NH(4)(NH(3))(4)][Ca(NH(3))(7)]As(3)S(6).2NH(3) (2) and [NH4(NH3)4][Ba(NH3)8]As3S6.NH3 (3) were synthesized by reduction of As(4)S(4) with Ca and Ba in liquid ammonia. All ammoniates were characterized by low-temperature single-crystal X-ray structure analysis. They were found to contain the ammine-ammonium complex with the maximal possible number of coordinating ammonia molecules, the [NH4(NH3)4]+ ion. 1 contains a special dimer, the [(NH4(NH3)4)2(mu-NH3)2]2+ ion, which is formed by two[NH4(NH3)4]+ ions linked by two ammonia molecules. The H(3)N-H...N hydrogen bonds in all three compounds range from 1.82 to 2.20 A (DHA = Donor-H...Acceptor angles: 156-178 degrees). In 2 and 3, additional H(2)N-H...S bonds to the thioanions are observed, ranging between 2.49 and 3.00 A (DHA angles: 120-175 degrees). Two parallel phenyl rings of the [B(C(6)H(5))(4)](-) anion in 1 form a pi...pi hydrogen bond (C...C distance, 3.38 A; DHA angles, 82 degrees), leading to a dimeric [B(C6H5)4]2(2-) ion. 相似文献
17.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group. 相似文献
18.
Petr Pacák 《Journal of solution chemistry》1993,22(9):839-850
Solubility, density, refractive index and viscosity of the title system in water and dimethylsulfoxide have been measured in the composition range from the pure solvent to the pure liquid salt. Molar volumes, apparent molar volumes and other volumetric quantities have been calculated and their concentration dependences are discussed. The molar refractivities of the solvent and salt were estimated and used for a discussion of ion-ion and ion-solvent interactions. The viscosity vs. concentration plot exhibits a maximum at the salt mole fraction x3=0.8 which cannot be described by any currently known equation. 相似文献
19.
(NH4)6Nd(NO3)9, A Ternary Ammonium-Rich Lanthanide Nitrate with Lonesome Nitrate Ions: (NH4)6[Nd(NO3)6](NO3)3 . Single crystals of the ternary ammonium neodymium nitrate (NH4)6Nd(NO3)9 are obtained from a solution of Nd2O3 in a melt of NH4NO3. In the crystal structure (monoclinic, C 2/c, Z = 4, a = 1 775.1(4), b = 912.7(3), c = 2 072.3(5) pm; β = 125.56(1)°; R = 0.059, Rw = 0.036) the Nd3+ ion is surrounded by six bidentate nitrate ligands so that anionic units [Nd(NO3)6]3? are formed. The units are isolated, but they are incorporated in layers parallel to (010). The structure is held together by a network of hydrogen bonds, built up by NH4+ and NO3? ions lying between the layers. Due to the structure, the compound may be described as a double salt like (NH4)3[Nd(NO3)6] · 3 NH4NO3 or, better, as (NH4)6[Nd(NO3)6](NO3)3. 相似文献
20.
Pérez J. Sánchez G. García J. Serrano J. L. López G. 《Journal of Thermal Analysis and Calorimetry》2001,66(2):361-370
The complex [Pd(2-Phpy)(μ-Cl)]2 reacts with pyridines (L=pyridine, α-picoline and γ-picoline), amines (L=isopropylamine, tert-butylamine) and ammonia to form the corresponding ortho-palladatedderivatives [Pd(2-Phpy)ClL]. The compounds have been characterized by C, H and Nanalyses and spectroscopic methods
(IR and 1H and 13C NMR).TG, DTG and DSC studies of the complexes were carried out in dynamic nitrogen atmosphere. From DSC analyses the heats
of decomposition were calculated. The kinetics ofthe first step of thermal decomposition were evaluated from TG data by isothermal
methods for L=pyridine and isopropylamine. The activation energies obtained are in the range 90–100 kJ mol-1. The best
fitting for data was observed for R2 and A1.5 kinetic models.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献