首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the problem of estimating the covariance matrix Σ and the precision matrix Ω (the inverse of the covariance matrix) in a star-shape model with missing data. By considering a type of Cholesky decomposition of the precision matrix Ω=ΨΨ, where Ψ is a lower triangular matrix with positive diagonal elements, we get the MLEs of the covariance matrix and precision matrix and prove that both of them are biased. Based on the MLEs, unbiased estimators of the covariance matrix and precision matrix are obtained. A special group G, which is a subgroup of the group consisting all lower triangular matrices, is introduced. By choosing the left invariant Haar measure on G as a prior, we obtain the closed forms of the best equivariant estimates of Ω under any of the Stein loss, the entropy loss, and the symmetric loss. Consequently, the MLE of the precision matrix (covariance matrix) is inadmissible under any of the above three loss functions. Some simulation results are given for illustration.  相似文献   

2.
1.IntroductionInthisarticleweconsiderthepointestimationofthegeneralizedprecisionofamultivariatenormaldistributionwithanunknownmeanvector.TObespecific,letXI,'?XubelidobservationfromNc(~,E)wherebothpERPandZ>0arecompletelyunknown.Insteadoftheoriginaldatasetonecanreducetheproblembysufficiencyandlookonlyatnn(X,S),whereX~n--1ZXiandS~Z(Xi--X)(Xi--X)'.ItiswellknownthatXisi=1i~1mutuallyindependentofSandX~Nc(~,n--'Z),S~Wb(n--1,Z).ThelossfunctionweconsiderinthispaperistheentropylossL(6,IZ…  相似文献   

3.
In this paper, we study the problem of estimating a multivariate normal covariance matrix with staircase pattern data. Two kinds of parameterizations in terms of the covariance matrix are used. One is Cholesky decomposition and another is Bartlett decomposition. Based on Cholesky decomposition of the covariance matrix, the closed form of the maximum likelihood estimator (MLE) of the covariance matrix is given. Using Bayesian method, we prove that the best equivariant estimator of the covariance matrix with respect to the special group related to Cholesky decomposition uniquely exists under the Stein loss. Consequently, the MLE of the covariance matrix is inadmissible under the Stein loss. Our method can also be applied to other invariant loss functions like the entropy loss and the symmetric loss. In addition, based on Bartlett decomposition of the covariance matrix, the Jeffreys prior and the reference prior of the covariance matrix with staircase pattern data are also obtained. Our reference prior is different from Berger and Yang’s reference prior. Interestingly, the Jeffreys prior with staircase pattern data is the same as that with complete data. The posterior properties are also investigated. Some simulation results are given for illustration.  相似文献   

4.
We investigate the problem of estimating the Cholesky decomposition in a conditional independent normal model with missing data. Explicit expressions for the maximum likelihood estimators and unbiased estimators are derived. By introducing a special group, we obtain the best equivariant estimators.  相似文献   

5.
This paper investigates the estimation of covariance matrices in multivariate mixed models. Some sufficient conditions are derived for a multivariate quadratic form and a linear combination of multivariate quadratic forms to be the BQUE (quadratic unbiased and severally minimum varianced) estimators of its expectations.  相似文献   

6.
Let X 1, , X n (n > p) be a random sample from multivariate normal distribution N p (, ), where R p and is a positive definite matrix, both and being unknown. We consider the problem of estimating the precision matrix –1. In this paper it is shown that for the entropy loss, the best lower-triangular affine equivariant minimax estimator of –1 is inadmissible and an improved estimator is explicitly constructed. Note that our improved estimator is obtained from the class of lower-triangular scale equivariant estimators.  相似文献   

7.
徐宝  王德辉  王瑞庭 《东北数学》2008,24(5):447-457
In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ).  相似文献   

8.
Motivated by problems in molecular biosciences wherein the evaluation of entropy of a molecular system is important for understanding its thermodynamic properties, we consider the efficient estimation of entropy of a multivariate normal distribution having unknown mean vector and covariance matrix. Based on a random sample, we discuss the problem of estimating the entropy under the quadratic loss function. The best affine equivariant estimator is obtained and, interestingly, it also turns out to be an unbiased estimator and a generalized Bayes estimator. It is established that the best affine equivariant estimator is admissible in the class of estimators that depend on the determinant of the sample covariance matrix alone. The risk improvements of the best affine equivariant estimator over the maximum likelihood estimator (an estimator commonly used in molecular sciences) are obtained numerically and are found to be substantial in higher dimensions, which is commonly the case for atomic coordinates in macromolecules such as proteins. We further establish that even the best affine equivariant estimator is inadmissible and obtain Stein-type and Brewster–Zidek-type estimators dominating it. The Brewster–Zidek-type estimator is shown to be generalized Bayes.  相似文献   

9.
设X1;…,Xn(n>p)是来自多元正态分布Np(μ,∑)的一个样本,其中μ∈R~p,∑>0均未知.本文在熵损失 L(sum from to ~,∑)=tr(∑~-1,sum from to ~)-log|∑~-1sum from to~|-p下证明了协方差矩阵∑的最佳仿射同变估计是不容许的,且给出了其改进估计.  相似文献   

10.
The estimation of the covariance matrix or the multivariate components of variance is considered in the multivariate linear regression models with effects being fixed or random. In this paper, we propose a new method to show that usual unbiased estimators are improved on by the truncated estimators. The method is based on the Stein–Haff identity, namely the integration by parts in the Wishart distribution, and it allows us to handle the general types of scale-equivariant estimators as well as the general fixed or mixed effects linear models.  相似文献   

11.
In this paper, the problem of estimating the scale matrix and their eigenvalues in a Wishart distribution and in a multivariate F distribution (which arise naturally from a two-sample setting) are considered. A new class of estimators which shrink the eigenvalues towards their arithmetic mean are proposed. It is shown that the new estimator which dominates the usual unbiased estimator under the squared error loss function. A simulation study was carried out to study the performance of these estimators.  相似文献   

12.
The aim of this paper is to characterize the Multivariate Gauss-Markoff model (MGM) as in (2.1) with singular covariance matrix and missing values. MGMDP2 model and completed MGMDP2Q model are obtained by three transformations D, P and Q (cf. (3.21)) of MGM. The unified theory of estimation (Rao, 1973) which is of interest with respect to MGM has been used.The characterization is reached by estimation of parameters: scalar 2 and linear combination as in (4.8), (4.6), (4.7) as well as by the model of the form (5.1) (cf. Th. 5.1). Moreover, testing linear hypothesis in the available model MGMDP2 by test function F as in (6.3) and (6.4) is considered.It is known (Oktaba 1992) that ten quantities in models MGMDP2, and MGMDP2Q are identical (invariant). They permit to say that formulas for estimation and testing in both models are identical (Oktaba et al., 1988, Baksalary and Kala, 1981, Drygas, 1983).An algorithm and the UMGMBO program for calculations concerning estimation and testing in MGM have been presented by Oktaba and Osypiuk (1993).  相似文献   

13.
在由信息论中的熵演绎出的一种新损失一加权P,q对称熵损失L(θ,δ)=θ/Pδp+δq/qθq-2(ρ,q>0)下,研究了一类指数分布模型c(x,η)θ-νe-νe-T(x)/θ的参数θ的Bayes估计的一般形式与精确形式,讨论了参数θ的形如cT(X)+d的一类估计的可容许性与不可容许性,并应用积分变换定理证明了参数θ的Bayes估计与可容许估计具有不变性,  相似文献   

14.
In this paper, the problems of estimating the covariance matrix in a Wishart distribution (refer as one-sample problem) and the scale matrix in a multi-variate F distribution (which arise naturally from a two-sample setting) are considered. A new class of estimators which shrink the eigenvalues towards their harmonic mean is proposed. It is shown that the new estimator dominates the best linear estimator under two scale invariant loss functions.  相似文献   

15.
Summary The problem is to estimate the mean of ap-dimensional normal distribution in the situation where there is vague information that the mean vector might be equal to zero vector. Minimax property of the preliminary test estimator obtained by the use of AIC (Akaike's Information Criterion) procedure is discussed under a loss function which is based on Kullback-Leibler information measure and evaluates both an error of model selection and that of estimation. Whenp is even, the minimaxity is shown to hold for small values ofp but not for large values.  相似文献   

16.
Let X be a p-variate (p ≥ 3) vector normally distributed with mean μ and covariance Σ, and let A be a p × p random matrix distributed independent of X, according to the Wishart distribution W(n, Σ). For estimating μ, we consider estimators of the form δ = δ(X, A). We obtain families of Bayes, minimax and admissible minimax estimators with respect to the quadratic loss function (δ ? μ)′ Σ?1(δ ? μ) where Σ is unknown. This paper extends previous results of the author [1], given for the case in which the covariance matrix of the distribution is of the form σ2I, where σ is known.  相似文献   

17.
In this paper, we study the existence of the uniformly minimum risk equivariant (UMRE) estimators of parameters in a class of normal linear models, which include the normal variance components model, the growth curve model, the extended growth curve model, and the seemingly unrelated regression equations model, and so on. The necessary and sufficient conditions are given for the existence of UMRE estimators of the estimable linear functions of regression coefficients, the covariance matrixV and (trV)α, where α > 0 is known, in the models under an affine group of transformations for quadratic losses and matrix losses, respectively. Under the (extended) growth curve model and the seemingly unrelated regression equations model, the conclusions given in literature for estimating regression coefficients can be derived by applying the general results in this paper, and the sufficient conditions for non-existence of UMRE estimators ofV and tr(V) are expanded to be necessary and sufficient conditions. In addition, the necessary and sufficient conditions that there exist UMRE estimators of parameters in the variance components model are obtained for the first time.  相似文献   

18.
In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors a and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction. A similar method is also proposed for the case that the parameters are restricted by a simple order: α1≥α2≥…≥αq, andβ1≥β2≥…βp. The strong consistency of the above two estimators is discussed. Furthermore, we consider the problem of testing homogeneity of parameters against the simple order restriction. We give the likelihood ratio (LR) test statistic for the testing problem and derive its asymptotic null distribution.  相似文献   

19.
We consider the estimation of error variance in the analysis of experiments using two level orthogonal arrays. We address the estimator which is the minimum of all the estimators which we obtain by pooling some sums of squares for factorial effects. Under squared error loss, we discuss whether or not this estimator uniformly improves upon the best positive multiple of error sum of squares. We show that when we have two factorial effects, we obtain uniform improvement. However, we show that when we have more than two factorial effects, we cannot necessarily obtain uniform improvement. Further, the above results are applied to the problem of estimating the smallest scale parameter of chi-square distributions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号