首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
对于强流脉冲电子束的传输,一般是利用引导磁场箍缩电子束使其无损的通过漂移管进入微波器件并进行束波互作用。与单次脉冲引导磁场相比,重复脉冲引导磁场的设计及强流电子束在其中的传输过程是非常复杂的,引导磁场既要满足与重复脉冲电子束的同步条件,又要满足束流传输的极限条件,同时也要满足微波器件对磁场位形和电子束几何尺寸的要求。  相似文献   

2.
重复频率强流电子束二极管实验研究   总被引:8,自引:6,他引:2       下载免费PDF全文
 采用静电场模拟对二极管结构及导引磁场位形分布进行了优化设计,利用设计的二极管在高压脉冲发生器上进行了重复频率运行实验研究,给出了相应测试波形,并对不同材料阴极、不同真空度情况下二极管的发射特性进行了比较。在二极管真空度满足一定要求(p<0.01Pa)条件下以在重复频率方式运行时,不论是石墨阴极还是金属阴极,输出电子束流都比较稳定。设计的二极管电子束电压超过500kV,电流约5kA,脉冲宽度40ns,重复频率100Hz。  相似文献   

3.
 简要阐述了脉冲变压器型重复脉冲强流电子束加速器CHP01的组成、主要特点及工作原理,利用设计的重复脉冲强流电子束源进行了长时间运行实验研究,实验结果达到:在100 Hz重复频率下连续运行5 s,脉冲变压器能稳定输出电压1.15 MV,强流束二极管输出电压超过800 kV、束流7 kA、脉冲宽度45 ns,阴极电子发射密度超过10 kA/cm2,且运行稳定可靠。利用该电子束源进行了X波段类周期慢波结构微波器件实验研究,在50 Hz重复频率下连续运行5 s,输出微波功率超过1 GW,脉冲宽度大于25 ns。  相似文献   

4.
简要阐述了脉冲变压器型重复脉冲强流电子束加速器CHP01的组成、主要特点及工作原理,利用设计的重复脉冲强流电子束源进行了长时间运行实验研究,实验结果达到:在100 Hz重复频率下连续运行5 s,脉冲变压器能稳定输出电压1.15 MV,强流束二极管输出电压超过800 kV、束流7 kA、脉冲宽度45 ns,阴极电子发射密度超过10 kA/cm2,且运行稳定可靠。利用该电子束源进行了X波段类周期慢波结构微波器件实验研究,在50 Hz重复频率下连续运行5 s,输出微波功率超过1 GW,脉冲宽度大于25 ns。  相似文献   

5.
电功率20 GW重复频率强流电子束二极管研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用静电场模拟对二极管结构及导引磁场位形分布进行了优化设计,并在20GW脉冲功率源上进行了重复频率运行实验研究,二极管输出电子束电压超过1MV,电流达20kA,脉冲宽度45ns,重复频率100Hz,达到了设计指标.  相似文献   

6.
针对基于SOS脉冲功率源S-5N的输出特点,利用PIC数值模拟软件,为S-5N设计了能够工作在低引导磁场条件下的无箔二极管系统,并在S-5N脉冲功率源上进行了低引导磁场环形强流电子束产生的实验研究。在引导磁场为0.5 T条件下,无箔二极管电流输出波形近似为梯形波,脉冲上升沿约9 ns,平顶部分约26 ns,二极管电压420 kV,电流2.7 kA,束斑平均半径约16 mm,具有良好的均匀性。  相似文献   

7.
对大面积矩形强流电子束自磁场在无限长束模型和有限长束模型下作了计算,给出了磁场的强度分布,并计算了在自磁场作用下的束电子的运动轨迹。描述了电子束在传输方向距阴极6cm处的箍缩图样。计算中考虑了二极管电场力,忽略了膜及Hibechi对束流的散射效应。  相似文献   

8.
电子束真空二极管重复频率运行时,它将表现出与单次运行时不同的特点。在电子束产生过程中,屏蔽半径应尽可能地小,且击穿延时时间较短,故选择石墨作为阴极材料。实验结果表明:在重复频率运行时,当环型阴极环厚较薄时,阴极的发射电流密度较大,因此对阴极的加热效应也加强,等离子体的膨胀速度加快,从而使得二极管阻抗减小,最后几次输出的电子束的电流较大,而电压减小;当重复频率较高时,由于加热效应使得阴极等离子体膨胀速度加快,最后几个脉冲阴极发射能力增强,波形重复性变差;当引导磁场强度增大时,阴极等离子体受到较大的磁场力约束,横向膨胀速度减慢,从而使得电子发射面积减小,总发射电流减小,二极管的阻抗增大。最后取引导磁场为1.5 T,阴极环厚为1 mm,得到重复频率100 Hz、束压827 kV、束流8.22 kA、脉冲波形之间重复性很好的均匀电子束输出。  相似文献   

9.
重复频率强流电子束的产生和传输实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 电子束真空二极管重复频率运行时,它将表现出与单次运行时不同的特点。在电子束产生过程中,屏蔽半径应尽可能地小,且击穿延时时间较短,故选择石墨作为阴极材料。实验结果表明:在重复频率运行时,当环型阴极环厚较薄时,阴极的发射电流密度较大,因此对阴极的加热效应也加强,等离子体的膨胀速度加快,从而使得二极管阻抗减小,最后几次输出的电子束的电流较大,而电压减小;当重复频率较高时,由于加热效应使得阴极等离子体膨胀速度加快,最后几个脉冲阴极发射能力增强,波形重复性变差;当引导磁场强度增大时,阴极等离子体受到较大的磁场力约束,横向膨胀速度减慢,从而使得电子发射面积减小,总发射电流减小,二极管的阻抗增大。最后取引导磁场为1.5 T,阴极环厚为1 mm,得到重复频率100 Hz、束压827 kV、束流8.22 kA、脉冲波形之间重复性很好的均匀电子束输出。  相似文献   

10.
长脉冲高阻抗强流电子束二极管   总被引:2,自引:2,他引:2       下载免费PDF全文
 介绍了强光一号加速器长脉冲功率系统;分析了强光一号加速器长脉冲轴向绝缘高阻抗电子束二极管的管绝缘体和真空磁绝缘传输线的结构与绝缘性能;阐述了二极管工作阻抗和阴阳极的设计原则,给出了设计参数。实验研究表明:二极管电压0.75~2.6MV,电流65~85kA,电压幅值对应的工作阻抗14~44Ω,输出轫致辐射脉冲宽度100~400ns,100 cm2输出窗口的轫致辐射剂量率108~2×109Gy/s。  相似文献   

11.
介绍了一种径向绝缘的高发射电流密度二极管的结构及其磁场系统,该二极管采用爆炸发射方式,阴极为高密度热解石墨,绝缘子为氧化铝陶瓷,并采用阴极屏蔽技术,阴极尖端处的最高场强达2.470 MV/cm。同时利用CHP01加速器实验平台对这种二极管的发射特性进行了实验研究。其输出电子束参数达到:电压600 kV、电流12 kA、脉冲宽度45 ns、脉冲重复频率100 Hz、阴极电子发射密度达17 kA/cm2。电压不稳定度小于3%,电流不稳定度小于5%。研究了在高发射电流密度下二极管重复频率稳定运行问题及引导磁场对二极管输出束流及特性阻抗的影响,结果表明:二极管输出束流随磁场增大而有所减小并趋于稳定;特性阻抗则随磁场的增大而增大,当磁场强度达到临界磁场以上时,特性阻抗也趋于稳定。  相似文献   

12.
强流电子束无箔二极管结构设计与特性研究   总被引:1,自引:3,他引:1       下载免费PDF全文
 主要叙述高功率二极管的理论模型和结构设计,采用基于引导磁场和相对论近似情况下的空间电荷限制流模型,对磁浸没无箔二极管产生的空心相对论电子束进行了动态数值模拟,研究了二极管几何结构及引导磁场对二极管束流特性的影响。  相似文献   

13.
主要叙述高功率二极管的理论模型和结构设计,采用基于引导磁场和相对论近似情况下的空间电荷限制流模型,对磁浸没无箔二极管产生的空心相对论电子束进行了动态数值模拟,研究了二极管几何结构及引导磁场对二极管束流特性的影响。  相似文献   

14.
介绍了一套基于切伦科夫辐射的、用于强流短脉冲电子束束剖面测量的装置。装置利用扫描相机记录背面打毛的石英玻璃薄片中产生的切伦科夫光信号。使用该装置,在中国工程物理研究院流体物理研究所的2MeV注入器上进行了切伦科夫光的验证实验和时间分辨的束剖面测量实验。分析表明,测量系统的时间分辨率和空间分辨率分别为1.75ns和0.74mm。  相似文献   

15.
推导了Rogowski线圈理论,给出了任意Rogowski线圈的表达式。通过使用高磁导率的磁芯材料,增加线圈匝数,设计出了能有效测量前沿变化0.1 s、强度mA量级的电子束电流的Rogowski线圈,并测得了电子束等离子体装置中的电子束电流信号。利用推导的任意Rogowski线圈表达式,成功获得低频与高频共存的电流波形。测量结果表明,该电子束等离子体系统中存在束流振荡,振荡幅度达12%。  相似文献   

16.
介绍了由于磁铁的安装误差和螺线管的存在而造成的束流径向和轴向的耦合,以及耦合对束流稳定的影响。结合CSRm结构的典型参数分析得出:二极磁铁和四极磁铁在纵向角安装偏差为-0.5~0.5 mrad;有螺线管存在的情况下,工作点落在和共振线时,将导致束流不稳定而大量损失,落在差共振线时,束流稳定。通过模拟计算发现:螺线管产生的耦合远大于磁铁的纵向角安装偏差产生的耦合。  相似文献   

17.
通过对连续种子光源的光强调制,并利用光纤放大器和固体介质放大器结合的混合放大方式,实现了百兆赫兹高重频可调谐单频激光光源。系统在基模输出条件下的最大输出功率为31.9 W,光束质量因子小于1.5,脉冲重复频率达到100 MHz,脉宽1 ns,测量得到的光束线宽小于0.8 GHz。实验结果验证了通过对连续光源进行光强调制获得高重频脉冲光源的可行性,并验证了混合放大方式是获得功率放大的一种有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号