首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
介绍了TiO2光催化的基本原理以及在环境污染物光催化降解方面的应用,阐述了TiO2光催化体系的发展趋势。引用文献28篇。  相似文献   

2.
研究了纳米TiO2对甘氨酸的光催化氧化性能及其氧化机理.结果表明,在实验浓度范围内,甘氨酸的光催化氧化符合准一级动力学反应.纳米TiO2的用量和溶液pH值都影响光催化反应.外加无机氧化物,能有效地捕获光致电子,增加溶液中羟基自由基的浓度,提高甘氨酸的光催化氧化能力.  相似文献   

3.
张慧 《科技信息》2010,(26):139-140
本文综述了国内外TiO2光催化技术的研究进展,介绍了TiO2光催化机理、TiO2光催化剂的制备方法和应用,讨论了TiO2光催化剂的改性问题及光催化技术存在的问题,并对其发展前景进行了分析。  相似文献   

4.
纳米TiO2的光催化行为   总被引:1,自引:0,他引:1  
利用改进的酸催化溶胶-凝胶法成功合成了TiO2纳米粒子。XRD,TEM技术表征结果表明,TiO2为具有Anatase结构的纳米粒子,其平均粒径为10nm。利用环己烷在其上的光催化氧化,以及反应条件如环己烷的浓度、体系的pH值、水的存在等对光催化的影响,进行了TiO2纳米微粒表面光催化行为的研究。  相似文献   

5.
高级氧化技术是难降解有机废水的有效处理方法,介绍了TiO2光催化氧化技术的原理和特点,并对其在难降解有机废水中的应用以及研究方向方面做了综述.  相似文献   

6.
纳米TiO2光催化材料改性研究进展   总被引:3,自引:0,他引:3  
黄荔  全水清 《江西科学》2008,26(6):997-1001
本文首先讨论了纳米TiO2光催化降解有机污染物的机理以及影响TiO2光催化效率的各种因素,根据近年来TiO2光催化技术的研究成果,重点探讨了TiO2的改性研究进展,并对TiO2在有机废水处理中的应用作了简要介绍。  相似文献   

7.
低温合成纳米TiO2及其气相光催化氧化性能   总被引:6,自引:0,他引:6  
以TiCl4为前驱体 ,采用控制水解法 ,在常温下合成出平均粒径为 2 5nm的锐钛型纳米TiO2 ,并在不同温度下进行热处理 .利用XRD、BET、DRS、TEM等手段对纳米TiO2 进行了表征 ,以丙酮作为目标降解物 ,考察其气相光催化氧化性能。结果表明 ,常温下制备的纳米TiO2 具有明显的量子尺寸效应。经过 6 0 0℃热处理的样品活性最好。比表面积与晶化度的适当平衡导致光催化活性的提高  相似文献   

8.
纳米TiO2光催化活性及其应用   总被引:3,自引:0,他引:3  
纳米TiO2作为光催化环境材料能有效降解多种对环境有害的污染,使有害物质矿化为CO2,H2O及其他无机小分子物质,因此可用于废水处理、空气净化以及杀菌除臭,本文综述了纳米级TiO2的制备及其光催化的机理,扼要介绍了纳米TiO2光催化反应在农药、医药、催化剂(化工)、环境工程等各方面的研究进展及应用前景。  相似文献   

9.
本文就提高纳米TiO2的光催化性能的研究进展作了综述,阐明了光催化的原理,影响纳米TiO2光催化的因素,并总结了金属离子掺杂、贵金属表面沉积、纳米TiO2半导体复合等常见几种改性纳米TiO2光催化性能的方法。最后指出了目前研究存在的问题,并提出建议。  相似文献   

10.
纳米TiO2光催化降解乙酸   总被引:3,自引:1,他引:3  
以廉价无机盐为原料, 采用溶胶-凝胶法制备纳米TiO2光催化剂, 研究其对乙酸的光催化降解过程. 考察了TiO2光催化剂处理温度、 用量、 反应液pH值、 污染物初始浓度、 共存离子等因素对光催化降解乙酸的影响, 获得了较好的光催化效果.  相似文献   

11.
论述了光催化氧化技术的基本原理,总结了国内外光催化技术的研究成果,提出了提高有机废水TiO2光催化降解效率的几种方法,并对TiO2光催化处理有机废水的实际应用前景进行了展望.  相似文献   

12.
0 IntroductionNitrogen oxides (NOx) generally are referred only to themajor species: nitric oxide (NO) and nitrogen oxides(NO2) in air pollution control. NOx is responsible for ozonedepletion and urban smog through photochemical reactionswith h…  相似文献   

13.
通过几种掺杂纳米TiO2对甲基橙光降解性的初筛,选取紫外光降解活性最高的TiO2/Ag与二嗪磷复合,并对复合形成的二嗪磷纳米制剂做了光降解性实验。结果表明,纳米TiO2/Ag具有明显的光催化活性,它的加入能明显提高二嗪磷的光催化降解速率。  相似文献   

14.
光催化氧化法降解苯酚的研究进展   总被引:4,自引:1,他引:4  
概述了二氧化钛光催化氧化反应及其用于降解苯酚的机理 ,介绍了光催化氧化反应降解苯酚的影响因素——催化剂及其固定、光催化反应装置、光的辐射时间和强度、苯酚初始浓度和溶液 p H值 ,也介绍了提高光催化反应速率的方法——贵金属的沉积、过渡金属离子的掺杂、半导体的复合 ,并且指出了光催化氧化研究在催化剂效率、光源利用等方面尚存在的问题 ,指出了设计集吸附、降解、分离于一体的复合型反应器 ,及开发太阳能源 ,并结合生化技术的研究方向  相似文献   

15.
探讨了光催化剂TiO2/C的制备条件和不同制备条件对NO2-的光催化氧化效果.研究表明,制备TiO2/C的最佳条件为Ti(OCH3)4的用量为10 ml,附载光催化剂样品在400℃下焙烧5 h,TiO2/C的用量为0.5 g时光催化效果最好.  相似文献   

16.
用光沉积法制备Ag/TiO2和Pd/TiO2催化剂样品,然后用表面光电压谱(SPS)和紫外可见吸收光谱(UV-Vis)对样品进行表征.以气态庚烷为反应体系,来比较上述两种催化剂的光催化活性.与纯TiO2比较,Ag和Pd的存在提高了TiO2的光催化活性;其原因可解释为金属Ag或Pd捕获电子,从而提高了电子-空穴对的分离效率;结果还表明与Pd/TiO2催化剂相比,Ag/TiO2表现出较高的光催化活性,这主要是Ag比Pd具有较强的捕获电子的能力.  相似文献   

17.
Photocatalytic Oxidation of NOx with Porous TiO2 Nanometer Thin Film   总被引:2,自引:0,他引:2  
A new kind of porous nano-TiO2 composite films was prepared on the glass substrate with the water glass as hinders and the sodium fluorosilicate as solidifying reagent. The morphologies of the films were studied by scanning electron microscope(SEM). The UV-Vis spectrophotometer was also used to investigate the absorption of the films. The gasphase photocatalytic oxidation of nitrogen oxides on the composite film was carried out in TiO2 UV system, and some important factors affecting the photocatalytic oxidation were also studied such as the catalyst concentration, vapor pressure and the presence of oxygen. The results showed the conversion of NOx reached 97.5% after 2 h UV-irradiation. The final product of photo-oxidation was detected to be HNO3 hy FT-IR. The way of photocatalytic oxidation of NOx was possibly useful in the practical application.  相似文献   

18.
以20W紫外灯为光源,研究了将TiO2粉末负载在硅胶颗粒上[1],对城市污水进行光催化氧化处理[2],其CODCr去除率达到40.59%.  相似文献   

19.
利用固体超强酸SO42-/T iO2及SO42-/W O3对硫代硫酸钠进行了光催化氧化的研究,并讨论了影响硫代硫酸钠氧化率的主要因素.实验结果表明:SO42-/T iO2对硫代硫酸钠的氧化能力比SO42-/W O3强.选择浓度为1.5 m o l/L的硫酸浸渍制得的SO42-/T iO2作为催化剂,用量为0.500 g,硫代硫酸钠溶液的起始浓度为50.0 m g/L、pH值为10.0,光照4小时,硫代硫酸钠的氧化率达99.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号