首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydration, state, and mobility of protons and Li+, Na+, and Cs+ ions in MF-4SK perfluorinated sulfonic acid cation-exchange membranes doped with silicon dioxide and phosphotungstic acid have been investigated by NMR and impedance spectroscopy. The dopants increase the moisture content of the membrane and change the system of pores and channels in which ion transport takes place. At low humidities, the dopant particles are involved in ion transport. The greatest effect is observed for the membranes doped with both SiO2 and phosphotungstic acid. The water molecules sorbed by dopant particles as a material participate in the hydration of alkali metal cations in the membrane.  相似文献   

2.
The Na+ concentration near membranes controls our nerve signals aside from several other crucial bioprocesses. Fluorescent photoinduced electron transfer (PET) sensor molecules target Na+ ions in nanospaces near micellar membranes with excellent selectivity against H+. The Na+ concentration near anionic micelles was found to be higher than that in bulk water by factors of up to 160. Sensor molecules that are not held tightly to the micelle surface only detected a Na+ amplification factor of 8. These results were strengthened by the employment of control compounds whose PET processes are permanently “on” or “off”.  相似文献   

3.
A model potential method in which a molecule is described as a single electron moving in the field of two polarizable cores is used to calculate the potential energy curves and the wavefunctions of the lowest six electronic states of the molecular ion Na2+. The ground X2Σg state has a dissociation energy of 0.98 eV at an equilibrium separation of 3.3 Å and the excited 2Πu state has a dissociation energy of 0.23 eV at an equilibrium separation of 5.2 Å. Various molecular properties of these two bound states are calculated. An analysis of the long range behaviour of all the six states is presented.  相似文献   

4.
Artificial counterparts of conical‐shaped transmembrane protein channels are of interest in biomedical sciences for biomolecule detection and selective ion permeation based on ionic size and/or charge differences. However, industrial‐scale applications such as seawater desalination, separation of mono‐ from divalent cations, and treatment of highly‐saline industrial waste effluents are still big challenges for such biomimetic channels. A simple monomer seeding experimental approach is used to grow ionically conductive biomimetic charged nanocone pores at the surface of an acid‐functionalized membrane. These readily scalable nanocone membranes enable ultra‐fast cation permeation (Na+=8.4× vs. Mg2+=1.4×) and high ion charge selectivity (Na+/Mg2+=6×) compared to the commercial state‐of‐the‐art permselective membrane (CSO, Selemion, Japan) owing to negligible surface resistance and positively charged conical pore walls.  相似文献   

5.
Potentials curves for the ground and excited states of the chlorine molecules and its positive and negative ions have been calculated by means of the MRD-CI method. The standard AO basis employed consists of 74 functions including two atomic d and one set of s and p bond species, and the results at the corresponding full CI level are estimated for each state via a perturbation correction. Special emphasis is placed upon the treatment of Rydberg-valence mixing in this system, which phenomenon is found to be essential to the understanding of Cl2 electronic absorption spectrum. All singlet states which correlate with the lowest dissociation limit plus many others which go to ionic Cl++Cl? or Rydberg Cl+Cl asymptotes are given explicit consideration. Among the triplet species of Cl2 which dissociate into the ground state atoms only the 3Πu state is not repulsive. The calculated D0 value for the ground state is 2.455 eV compared to the experimental value of 2.475 eV, while the vertical ionization energy and electron affinity are found to be 11.48 and 2.38 eV respectively, also in very good agreement with the corresponding measured data of 11.50 and 2.51 ± 0.1 eV. In addition to Cl2 laser line is confirmed to result from a 3Πg3Πu emission, whereby the calculated downward vertical transition energy of 4.86 eV fits in quite well with the known location of this line at 4.805 eV. The first two dipole-allowed transitions from the ground state of chlorine involve 1Σu+ and 1Πu states which are calculated to be nearly isoenergetic, and these results also match very well with the location of the first absorption band in this spectrum. Finally quite similarly as in O2 it is found that an avoided crossing between Rydberg and valences states produces a relatively steep potential well for an upper state (2 1Σu+), whose location concides with that of a second absorption band recently observed in synchrotron radiation studies.  相似文献   

6.
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.  相似文献   

7.
《Chemical physics letters》1987,139(2):149-154
Extended MC SCF computations of the CAS SCF type have been performed on four energetically low-lying electronic states of HeC2+ dications. The X 1Σ+ ground state is predicted to be thermodynamically stable by 0.72 eV, while the a 3Π and A 1Π excited states represent metastable species with barrier heights of 2.19 and 0.20 eV, respectively. The b 3Σ+ state exhibits merely a very shallow potential dip with a well depth of only 0.06 eV. The HeC2+ dication is therefore predicted to be experimentally observable in the gas phase. Bonding in these unusual dications is discussed and compared to the isoelectronic CH+ cation.  相似文献   

8.
This paper discusses the alkaline ion (Na+) role in the uphill transport of amino acids through a bulk liquid membrane. The aqueous phases (source phase - S and receiving phase - R) are made up of equimolar concentrations of amino acid (4.38 mM p-aminobenzoic acid (PABA)) and alkaline ion (75 mM Na+). A chloroform solution containing 5 mM dibenzo-18-crown-6 (DB18C6) represents the bulk liquid membrane (M). The data obtained show that at the S-M interphase, the amino acid is coupled with the carrier via the H3N+ group rather than being transported to the R-M interphase, where Na+ substitutes the amino acid. If Na+ is absent, the amino acid is transported to the opposite direction. These results support the hypothesis that the presence of Na+ ion in the aqueous phases assures the ‘biological’ direction of aminobenzoic acids transport through membranes.  相似文献   

9.
Enthalpies of transfer from water to methanol have been obtained via a thermochemical cycle for the [M+18C6] complexes where M+  Na+, K+, Rb+, Cs+, and Ag+. Variation of the transfer enthalpy with M+ is small.  相似文献   

10.
The dependence of the Na2 electron impact ionization rate is measured as a function of vibrational excitation in a crossed molecule-electron beamm arrangement at collision energiesE coll ≤ 3 eV above the ionization threshold. Specific vibrational distributions in theX 1 g + state with average vibrational energies of 0.17 eV, 0.276 eV, and 0.349 eV, are prepared via Franck-Condon pumping using a narrow-band cw laser. Enhancement of the ionization rate is observed only at impact energies near the ionization threshold where the ionization rate increases linearly as a function of vibrational excitation. Analysis of the experimental data is based on three model calculations. The first of these calculations equates vibrational energy with kinetic energy and agrees well with the experimental data. A second, more refined model allows for differences in state-to-state ionization rates and uses Franck-Condon factors to estimate transition probabilities, but leads to a less favorable agreement. The third one employs a semi-classical formulation of the Franck-Condon principle. It provides the best agreement with the experimental data. In contrast with an earlier study of electron impact ionization of diatomic molecules [20], we find no evidence of dynamical modification of the ionization rate, due to vibrational motion of the nuclei, at the present level of accuracy of our data and analysis.  相似文献   

11.
The B?2 state of H2O+ is predissociated twice. First, by the ã4B1 state, giving OH+ + H fragments via spinorbit coupling interaction. Secondly, by a2A state, giving H + OH fragments via spin-orbit coupling and Coriolis interactions. A vibrational analysis of the photoelectron band of the B? state of H2O+ and D2O+ is carried out. This provides the vibrational frequencies of the H2O+, D2O+ and HDO+ ions, as well as a vibrational assignment of the peaks. The H2O+ ion in its B?2B2 state is found to have a OH bond length of 1.12 A and a valence angie of 78°.In order to describe the unimolecular fragmentation process, a distinction is introduced between the totally symmetric, optically active vibrational modes, and the antisymmetric ones which are coupled to the continuum. The former are supplied with photon or electron impact energy, but only the latter are chemically efficient. The dynamics of the dissociation process depends therefore on the couplings among normal modes. This is studied in the framework of two models. In Model 1, it is assumed that, as a result of the anharmonicity of the potential energy surface, only even overtones of the antisymmetric vibration are excited by Fermi resonance. In Model II, excitation of the odd overtones is provided by vibronic coupling. Model II is in better agreement with experiment than Model I. Calculated and experimental results have been compared on the following points: isotopic shift on the appearance potential of OH+ and OD+ ions, shapes of the photoionization curves, fragmentation pattern with 21 eV photons, presence of a unimolecular metastable transition, production of O+ ions. All the vibrational levels situated above the dissociation asymptote are totally predissociated. Autoionization is shown in this case to contribute only to the formation of molecular H2O+ ions, and not to that of the OH+ fragments. For 21 eV electrons, the contribution due to direct ionization is calculated to represent about 25% of the total cross section, the rest being due to autoionization.  相似文献   

12.
Three isomeric series of bis(crown ether)s have been synthesized by condensation of the appropriate formylnaphthocrown with 1,4‐phenylenediacetonitrile. The interaction of these ligands with K+ and Na+ has been investigated by UV and fluorescence spectroscopic techniques. Among them the bis(crown ether) 2a exhibits excellent K+‐selectivity over Na+ and a dramatic increase in the fluorescence intensity of chromophores.  相似文献   

13.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

14.
The ab initio CI study of excited states of alkali metal clusters accounts for spectroscopical patterns obtained from the photodepletion spectra of the neutral or cationic species, predicts the excitation energies and transition intensities in the complete agreement with the measured quantities and permits an assignment of the cluster structures. The calculated optical spectra for various clusters with 4 and 8 valence electrons are compared: Na4, Li4, LiNa3; Na8 and Na 9 + . A molecular interpretation of the rich spectra of tetramers as well as of the dominant intense transitions located at ~2.5–2.7 eV in the case of Na8 and Na 9 + with the weak fine structure shifted to the red is given.  相似文献   

15.
《Chemical physics letters》1987,142(5):349-353
Complete active space MC SCF (CAS SCF) calculations followed by second-order configuration interaction (SOCI) calculations are carried out on the potential energy surfaces (bending surface, linear surfaces) of the 2Σg+ ground state of He3+. The potential minimum for the 2Σg+ state occurs at a linear geometry with HeHe bond length of 1.248 Å. The binding energy of He3+ with respect to He + He+ + He was calculated to be 2.47 eV at the SOCI level. The energy required to dissociate He3+ (2Σg+) into He2+ (2Σu+) and He(1S) is calculated to be 0.14 eV. The same level of SOCI calculations of He2+ yield a De value of 2.36 eV.  相似文献   

16.
The influence of Mg2+, Na+ and temperature on the conformational state of three-stranded helical polyA/2polyU (A2U) has been studied by the thermal denaturation method. At Na+ concentrations of 0.01–0.1 M , on heating the transition A2U→AU+U (the 3→2 transition) and then AU→A+U transition (the 2→1 transition) are observed. (AU is double helix polyA/polyU; A and U are single-stranded polyA and polyU, respectively.) With 0.01 M and 0.03 M Na+ these transitions occur at Mg2+ concentrations within (0 ÷ 0.003) M . At these ionic concentrations, there is a narrow temperature region (3 ÷ 5°C) at which double-helical AU formed by the 3→2 transition is resistant to heating. In 0.1 M Na+, a rise in the Mg2+ concentration leads to a continuous decrease in the temperature range of this region, and above a critical concentration of Mg2+ (ca. 3.6×10–5 M )cr there is only one transition (the 3→1 transition) instead of the successive transitions 3→2→1. The constants of Mg2+ ion association with polyU, polyA and A2U were calculated using equilibrium binding theory. The data obtained helped explain the reasons for the different phase diagrams for A2U + Mg2+ complexes in solution at high and low Na+ concentrations.  相似文献   

17.
An extensive diabatic investigation of the NaRb species has been carried out for all excited states up to the ionic limit NaRb+. An ab initio calculation founded on the pseudopotential, core polarization potential operators and full configuration interaction has been used with an efficient diabatization method involving a combination of variational effective hamiltonian theory and an effective overlap matrix. Diabatic potential energy curves and electric dipole moments (permanent and transition) for all the symmetries Σ+, Π, and Δ have been studied for the first time. Thanks to a unitary rotation matrix, the examination of the diabatic permanent dipole moment (PDM) has shown the ionic feature clearly seen in the diabatic 1Σ+ potential curves and confirming the high imprint of the NaRb+ ionic state in the adiabatic representation. Diabatic transition dipole moments have also been computed. Real crossings have been shown for the diabatic PDM, locating the avoided crossings between the corresponding adiabatic energy curves.  相似文献   

18.
The structure and spectroscopic properties of the ground and the lowest excited electronic states of the alkali hydride cation NaH+ have been investigated using an ab initio approach. In this approach, a nonempirical pseudopotential for the Na+ core has been used and a core–core and a core‐valence correlation corrections have been added. The adiabatic potential energy curves and the molecular spectroscopic constants for numerous electronic states of 2Σ+, 2Π, and 2Δ symmetries, dissociating up to Na (4d) + H+ and Na+ + H (3d), have been calculated. As no experimental data are available, we discuss our results by comparing with the available theoretical calculations. A satisfying agreement has been found for the ground state with previous works. However, a clear disagreement between this study and the model potential work of Magnier (Magnier, J. Phys. Chem. A 2005, 109, 5411) has been observed for several excited states. Numerous avoided crossings between electronic states of 2Σ+ and 2Π symmetries have been found and analysed. They are related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Na+H and NaH+. Furthermore, we provide an extensive set of data concerning the transition dipole moments from X2Σ+ and the 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. Finally, the adiabatic potential energy curves of the ground (X2Σ+) and the first (22Σ+) excited states and the transition dipole moments between these states are used to evaluate the radiative lifetimes for the vibrational levels of the 22+ state for the first time. In addition to the bound–bound contribution, the bound‐free term has been evaluated and added to the total radiative lifetime. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Relative differential cross sections, for both direct and charge exchange scattering have been obtained for the Li+ + K, Na+ + K and K+ + Na alkali ion—atom collisions, over the energy range 200–1200 eV and for scattering angles 0–6 mrad (in one case 0–15 mrad)- The experimental results are compared to semiclassical calculations, based upon recent potential energy curves. The charge exchange probabilities are calculated by solving the time dependent Schrödinger equation in a two-state approximation. In the Li++ K experiment diffraction effects are observed, which can be compared to the Fraunhofer diffraction. of an annular diaphragm.  相似文献   

20.
The potential energy surfaces for the reaction of bare niobium cation with ethane, as a prototype of the C–H and C–C bonds activation in alkanes by transition metal cations, have been investigated employing the Density Functional Theory in its B3LYP formulation. All the minima and key transition states have been examined along both high- and low-spin surfaces. For both the C–H and C–C activation pathways the rate determining step is that corresponding to the insertion of the Nb cation into C–H and C–C bond, respectively. However, along the C–H activation reaction coordinate the barrier that is necessary to overcome is 0.13 eV below the energy of the ground state reactants asymptote, while in the C–C activation branch the corresponding barrier is about 0.58 eV above the energy of reactants in their ground state. The overall calculated reaction exothermicities are comparable. Since the spin of the ground state reactants is different from that of both H–Nb+–C2H5 and CH3–Nb+–CH3 insertion intermediates and products, spin multiplicity has to change along the reaction paths. All the obtained results, including Nb+–R binding energies for R fragments relevant to the examined PESs, have been compared with existing experimental and theoretical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号