首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Detailed protonation experiments of the [5,6]‐pinenebipyridine molecule and the unsubstituted [4,5]‐ and [5,6]‐CHIRAGEN[0] ligands in various solvents indicate a variety of structures of the protonated species. UV‐visible and NMR measurements (including 15N chemical shifts) show the transition from trans to cis conformation of [5,6]‐pinenebipyridine upon protonation. The [4,5]‐CHIRAGEN[0] ligand, in which the protonation sites of the nitrogen atom donors are at opposite sides of the molecule, behave essentially like two independent bipyridine moieties; this behaviour was monitored by UV‐visible, CD and NMR spectroscopy (including 15N data). In the case of the [5,6]‐CHIRAGEN[0], a pocket of donor atoms provides a chiral environment for two protons per ligand.  相似文献   

2.
The nitroxide‐based free radical 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15N and/or 2H isotopic labeling of 4‐oxo‐TEMPO free radical on 13C DNP of 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13C DNP: 4‐oxo‐TEMPO, 4‐oxo‐TEMPO‐15N, 4‐oxo‐TEMPO‐d16 and 4‐oxo‐TEMPO‐15N,d16. Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13C DNP efficiency of these 15N and/or 2H‐enriched 4‐oxo‐TEMPO free radicals are relatively the same compared with 13C DNP performance of the regular 4‐oxo‐TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13C DNP signals of these samples all doubled in the same manner, and the 13C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4‐oxo‐TEMPO free radicals have negligible effects on the 13C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Polymer-supported catalysts have been of great interest in organic syntheses, but have suffered from the difficulty in obtaining direct structural information regarding the catalyst species embedded in the polymer due to the limitations of most analytical methods. Here, we show that dynamic nuclear polarization (DNP)-enhanced solid-state NMR is ideally positioned to characterize the ubiquitous cross-linked polystyrene (PS)-supported catalysts, thus enabling molecular-level understanding and rational development. Ammonium-based catalysts, which show excellent catalytic activity and reusability for the transesterification of methyl esters with glycidol, giving glycidyl esters in high yields, were successfully characterized by DNP 15N NMR spectroscopy at 15N natural abundance. DNP 15N NMR shows in particular that the decomposition of quaternary alkylammonium moieties to tertiary amines was completely suppressed during the catalytic reaction. Furthermore, the dilute ring-opened product derived from glycidol and NO3 was directly characterized by DNP 15N CPMAS and 1H–15N and 1H–13C HETCOR NMR using a 15N enriched (NO3) sample, supporting the view that the transesterification mechanism involves an alkoxide anion derived from an epoxide and NO3. In addition, the detailed analysis of a used catalyst indicated that the adsorption of products on the cationic center is the major deactivation step in this catalysis.

We demonstrated that DNP-enhanced NMR spectroscopy enables the direct and detailed characterization of polymer-supported alkylammonium catalysts.  相似文献   

4.
The infrared spectra of cobalt acetate dihydrate provide a direct evidence for the existence of quite strong hydrogen bonds formed by the water protons. An intense band is, namely, found around 2750 cm?1, several additional bands are present at lower frequencies and bands originating from water librations appear above 1000 cm?1. The existence of a band around 3310 cm?1 on the other hand, indicates that much weaker hydrogen bonds are also present. On deuteration the protons involved in stronger hydrogen bonds are apparently replaced by deuterons to a higher degree than those forming weaker H-bonds.  相似文献   

5.
Deuterated forms of aromatic charge transporting heterocycles 2 and 3 used in organic light-emitting diodes have been produced by hydrothermal reactions, catalyzed by Pt/C or Pd/C. Comprehensive analysis by mass spectroscopy, 1H, 2H and 13C NMR enables determination of the overall quantity of D atoms present, as well as the level of deuteration at each molecular site. The roles of solubility and steric availability in deuteration are discussed in the light of these results. Neutron reflectometry indicates excellent scattering contrast between protonated and deuterated forms of these molecules, with nanoscale thin films showing the same density as in their bulk molecular forms. Although used for morphological studies of thin films typically used in OLEDs, the synthetic and analysis methods described here are generic and suitable for deuteration of other conjugated aromatic heterocycles and other optoelectronic devices.  相似文献   

6.
Aggregates of singly protonated peptides formed with a nanoelectrospray ion source have been observed in the gas phase using Fourier transform ion cyclotron resonance (FT-ICR). Employment of “soft” ion sampling conditions in the source, which were developed previously to generate water clusters of biomolecules, provides significant yields of aggregates of singly protonated GGDPG ([2GGDPG + 2H]2+), GGEPG ([2GGEPG + 2H]2+), and VEPIPY (2VEPIPY + 2H]2+). With peptide mixtures, heteroaggregates, e.g., [GGDPG + GGEPG + 2H]2+ have also been observed along with the homoaggregates. These weakly bound noncovalent complexes undergo facile exothermic dissociation into the corresponding singly protonated monomer species with normal operation of the electrospray ion source. For example, the aggregates were not observed in FT-ICR experiments utilizing a conventional electrospray ionization (ESI) or fast atom bombardment source or with a quadrupolar ion trap mass spectrometer equipped with a conventional ESI source. The formation and metastability of these aggregates are dependent on highly specific intermolecular hydrogen bonding between the monomers. The amino acid sequence (DPG) of GGDPG mimics the well-known β reverse turn of proteins and semiempirical calculations show that it provides excellent hydrogen bonding sites for a protonated N-terminus amino group. Support for this conjecture is provided by the failure to observe aggregate formation of singly protonated peptides with several larger peptides, including hexaglycine and hexaalanine.  相似文献   

7.
Twelve 2,3′-bisindolylmethanes with various substituents were investigated using electrospray ionization quadrupole time-of-flight tandem mass spectrometry in positive ion mode. A retro-[3+2] reaction was observed in the collision-induced dissociation spectra of protonated 2,3′-bisindolylmethanes for the first time. The mechanism of retro-[3+2] reaction was concerted or stepwise. For the concerted pathway, carbon–carbon bonds of a protonated compound simultaneously cracked and the m/z 208 ion ([C15H10D2N]+) was observed with hydrogen–deuterium exchange labeling. The stepwise pathway goes through 1,3-hydrogen migration twice and the m/z 208 ion ([C15H10D2N]+) and m/z 207 ion ([C15H11DN]+) were detected with deuterium labeling. In the deuterium-labeled tandem mass spectrum for one compound, only the peak at m/z 208 was present at high abundance, suggesting that the concerted pathway is more likely. In addition, the substituents have no obvious trends on the ratios of the product intensity to the base intensity, further supporting the concerted pathway.  相似文献   

8.
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1H-1H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.  相似文献   

9.
Cellular dynamic nuclear polarization (DNP) has been an effective means of overcoming the intrinsic sensitivity limitations of solid-state nuclear magnetic resonance (ssNMR) spectroscopy, thus enabling atomic-level biomolecular characterization in native environments. Achieving DNP signal enhancement relies on doping biological preparations with biradical polarizing agents (PAs). Unfortunately, PA performance within cells is often limited by their sensitivity to the reductive nature of the cellular lumen. Herein, we report the synthesis and characterization of a highly bioresistant and hydrophilic PA (StaPol-1) comprising the trityl radical OX063 ligated to a gem-diethyl pyrroline nitroxide via a rigid piperazine linker. EPR experiments in the presence of reducing agents such as ascorbate and in HeLa cell lysates demonstrate the reduction resistance of StaPol-1. High DNP enhancements seen in small molecules, proteins and cell lysates at 18.8 T confirm that StaPol-1 is an excellent PA for DNP ssNMR investigations of biomolecular systems at high magnetic fields in reductive environments.

The new polarizing agent combines extraordinarily high bioresistance with excellent DNP performance at high magnetic fields and provides uniform DNP enhancement of 183 at 18.8 T for [13C, 15N]-ubiquitin in HeLa cell lysates.  相似文献   

10.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   

11.
Recent studies have shown that dynamic nuclear polarization (DNP) can be used to detect 17O solid-state NMR spectra of naturally abundant samples within a reasonable experimental time. Observations using indirect DNP, which relies on 1H mediation in transferring electron hyperpolarization to 17O, are currently limited mostly to hydroxyls. Direct DNP schemes can hyperpolarize non-protonated oxygen near the radicals; however, they generally offer much lower signal enhancements. In this study, we demonstrate the detection of signals from non-protonated 17O in materials containing silicon. The sensitivity boost that made the experiment possible originates from three sources: indirect DNP excitation of 29Si via protons, indirect detection of 17O through 29Si nuclei using two-dimensional 29Si{17O} D-HMQC, and Carr-Purcell-Meiboom-Gill refocusing of 29Si magnetization during acquisition. This 29Si-detected scheme enabled, for the first time, 2D 17O−29Si heteronuclear correlation spectroscopy in mesoporous silica and silica-alumina surfaces at natural abundance. In contrast to the silanols showing motion-averaged 17O signals, the framework oxygens exhibit unperturbed powder patterns as unambiguous fingerprints of surface sites. Along with hydroxyl oxygens, detection of these moieties will help in gaining more atomistic-scale insights into surface chemistry.  相似文献   

12.
The structure and surface functionalization of biologically relevant silica-based hybrid materials was investigated by 2D solid-state NMR techniques combined with dynamic nuclear polarization (DNP). This approach was applied to a model system of mesoporous silica, which was modified through in-pore grafting of small peptides by solid-phase peptide synthesis (SPPS). To prove the covalent binding of the peptides on the surface, DNP-enhanced solid-state NMR was used for the detection of 15N NMR signals in natural abundance. DNP-enhanced heterocorrelation experiments with frequency switched Lee–Goldburg homonuclear proton decoupling (1H–13C and 1H–15N CP MAS FSLG HETCOR) were performed to verify the primary structure and configuration of the synthesized peptides. 1H FSLG spectra and 1H-29Si FSLG HETCOR correlation spectra were recorded to investigate the orientation of the amino acid residues with respect to the silica surface. The combination of these NMR techniques provides detailed insights into the structure of amino acid functionalized hybrid compounds and allows for the understanding for each synthesis step during the in-pore SPPS.  相似文献   

13.
(13)C CPMAS NMR has been investigated in application to protein samples with a variety of deuteration patterns. Samples were prepared with protons in either all hydrogen positions, only in the exchangeable sites, or in the exchangeable sites plus select methyl groups. CP dynamics, T(1) relaxation times, and (13)C line widths have been compared. Using ubiquitin as a model system, reasonable (1)H-(13)C CP transfer is observed for the extensively deuterated samples. In the absence of deuterium decoupling, the (13)C line widths observed for the deuterated samples are identical to those observed for the perprotio samples with a MAS rate of 20 kHz. Extensive deuteration has little effect on the T(1) of the exchangeable protons. On the basis of these observations, it is clear that there are no substantive compromises accompanying the use of extensive deuteration in the design of (1)H, (15)N, or (13)C solid-state NMR methods.  相似文献   

14.
We analyzed the exponent (α) values in Gaussian‐type functions (GTF) for protons and deuterons in BH3, CH4, NH3, H2O, HF, and their deuterated molecules for the development of nuclear basis functions, which are used for molecular orbital (MO) calculations that directly include nuclear quantum effects. The optimized α (αopt) value in the single s‐type ([1s]) GTF for protons is changed due to the difference in flexibility of the electronic basis sets. The difference between the energy obtained by using the αopt value for each molecule and that obtained by using the average α (αave) value for these exponents with the 6‐31G(d,p) electronic basis function is only 2 × 10?5 a.u. The αave values of protonic and deuteronic [1s] GTFs by the present calculation are 24.1825 and 35.6214, respectively. We found that the αave values enable the evaluation of the total energy and the geometrical changes in hydrogen bonding, such as O…H? O, O…H? N, and O…H? C, while the αopt value became small by forming a hydrogen bond. The result using only the [1s] GTF for the protonic and deuteronic basis functions is sufficient to explain the differences of energy and geometry induced by the H/D isotope effect, although the total energy of ~5 × 10?4 a.u. was improved by using the s‐, p‐, and d‐type ([1s1p1d]) GTFs for protons and deuterons. We clearly demonstrate that the protonic and deuteronic basis functions based on the αave value enable us to apply the method to other sample molecules (glycine, malonaldehyde, and formic acid dimer). The protonic and deuteronic basis functions we developed treat the quantum effects of protons and deuterons effectively and extend the application range of the MO calculation to include nuclear quantum effects. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

15.
Abstract

Deuterated polyisobutylenes carrying protonated initiator fragments were prepared by the living polymerization technique employing perdeuterated isobutylene [CD2=C(CD3)2] and select protonated initiators (see Scheme 1). The polymers were analyzed by 1H- and 13C-NMR spectroscopy, and the resonances due to the protic initiator fragments were unequivocally assigned. The assignments of 13C-NMR signals were affected by the distortionless enhancement by polarization transfer mode of spectra accumulation.  相似文献   

16.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

17.
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15N-labeled [15N]dalfampridine (4-amino[15N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15N polarization levels of [15N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15N polarization levels of free and equatorial catalyst-bound [15N]dalfampridine were investigated. Moreover, we studied 15N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15N polarization decay at the Earth's magnetic field and at 1.4 T.  相似文献   

18.
In solid-state NMR, deuteron (2H) spectroscopy can be performed in full analogy to1H spectroscopy, including2H chemical-shift resolution and2H-X dipolar correlation schemes, when the NMR experiments are conducted in a “rotor-synchronized” fashion under fast magic-angle spinning. Here, 2H-X NMR experiments of this type, including2H-15N and2H-1H chemical-shift correlations and distance measurements, are introduced and demonstrated on cytosine monohydrate, whose acidic protons can readily be replaced by deuterons by recrystallization from D2O. In this way,2H NMR spectroscopy provides information complementary to1H NMR data, which is particularly useful for studying hydrogen bonds in supra- or biomolecular systems. Electronic supplementary material Supplementary material is available in the online versionof this article atand is accessible for authorized users.  相似文献   

19.
Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13C-methyl polarization source and 13C-carbonyl target in 2-13C-ethyl 1-13C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.  相似文献   

20.
Dissolution dynamic nuclear polarization (DNP) enables high‐sensitivity solution‐phase NMR experiments on long‐lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution‐state 1H NMR upon polarizing low‐γ nuclear species. Following solid‐state hyperpolarization of both 13C and 1H, solution‐phase 1H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring 13C nuclei appeared larger than the typically dominant 12C‐bonded 1H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two‐ and three‐spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization‐transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross‐relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the 13C‐bound 1H NMR satellite resonances. The dynamics of these novel cross‐relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced‐sensitivity 1H NMR traces was explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号