首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the present study, a novel and unconventional two-dimensional (2D) material with Dirac electronic features has been designed using sulflower with the help of density functional theory methods and first principles calculations. This 2D material comprises of hetero atoms (C, S) and belongs to the tetragonal lattice with P4/nmm space group. Scrutiny of the results show that the 2D nanosheet exhibits a nanoporous wave-like geometrical structure. Quantum molecular dynamics simulations and phonon mode analysis emphasize the dynamical and thermal stability. The novel 2D nanosheet is an auxetic material with an anisotropy in the in-plane mechanical properties. Both composition and geometrical features are completely different from the conditions necessary for the formation of Dirac cones in graphene. However, the presence of semi-metallic nature, linear band dispersion relation, massive fermions and massless Dirac fermions are observed in the novel 2D nanosheet. The massless Dirac fermions exhibit highly isotropic Fermi velocities (vf=0.68×106 m/s) along all crystallographic directions. The zero-band gap semi metallic features of the novel 2D nanosheet are perturbative to the electric field and external strain.  相似文献   

2.
近年来,用于电化学能源存储和转化的石墨烯材料,得到了研究者们越来越多的关注。但是,这些石墨烯材料不同于严格定义的单原子碳层结构,往往具有孔洞、杂原子和化学官能团等缺陷结构。由于制备方法的不同,缺陷结构各不相同,其电化学性能也表现各异。结构分析表明,这类材料是由类似石墨烯片段的单元与聚合物链共价连接而成,使其具有石墨烯和聚合物的双重特性,我们称之为石墨烯化聚合物。由小分子通过自下而上的方法制备的多孔聚合物,也可以通过进一步热交联等方法,使其形成包含石墨烯片段单元与聚合物链的化学结构。这些材料与石墨烯衍生材料一起组成了石墨烯化聚合物的整个谱系;这个谱系涵盖了由聚合物到石墨烯的过渡区。更重要的是,这类材料特殊的结构与性质,使其成为一种兼具电子和离子传输通道的三维富碳高分子材料,非常适合作为电极材料应用于电化学能源存储和转化,这为我们深入研究储能器件中电极材料的结构与性能的相关关系提供了很好的材料平台。  相似文献   

3.
Two‐dimensional (2D) boron sheets have been successfully synthesized in recent experiments, however, some important issues remain, including the dynamical instability, high energy, and the active surface of the sheets. In an attempt to stabilize 2D boron layers, we have used density functional theory and global minimum search with the particle‐swarm optimization method to predict four stable 2D boron hydride layers, namely the C2/m, Pbcm, Cmmm, and Pmmn sheets. The vibrational normal mode calculations reveal all these structures are dynamically stable, indicating potential for successful experimental synthesis. The calculated Young's modulus indicates a high mechanical strength for the C2/m and Pbcm phases. Most importantly, the C2/m, Pbcm, and Pmmn structures exhibit Dirac cones with massless Dirac fermions and the Fermi velocities for the Pbcm and Cmmm structures are even higher than that of graphene. The Cmmm phase is reported as the first discovery of Dirac ring material among boron‐based 2D structures. The unique electronic structure of the 2D boron hydride sheets makes them ideal for nanoelectronics applications.  相似文献   

4.
Two‐dimensional (2D) boron sheets have been successfully synthesized in recent experiments, however, some important issues remain, including the dynamical instability, high energy, and the active surface of the sheets. In an attempt to stabilize 2D boron layers, we have used density functional theory and global minimum search with the particle‐swarm optimization method to predict four stable 2D boron hydride layers, namely the C2/m, Pbcm, Cmmm, and Pmmn sheets. The vibrational normal mode calculations reveal all these structures are dynamically stable, indicating potential for successful experimental synthesis. The calculated Young's modulus indicates a high mechanical strength for the C2/m and Pbcm phases. Most importantly, the C2/m, Pbcm, and Pmmn structures exhibit Dirac cones with massless Dirac fermions and the Fermi velocities for the Pbcm and Cmmm structures are even higher than that of graphene. The Cmmm phase is reported as the first discovery of Dirac ring material among boron‐based 2D structures. The unique electronic structure of the 2D boron hydride sheets makes them ideal for nanoelectronics applications.  相似文献   

5.
Resonance energy transfer from a dye molecule to graphene   总被引:1,自引:0,他引:1  
We study the distance dependence of the rate of resonance energy transfer from the excited state of a dye to the pi system of graphene. Using the tight-binding model for the pi system and the Dirac cone approximation, we obtain the analytic expression for the rate of energy transfer from an electronically excited dye to graphene. While in traditional fluorescence resonance energy transfer, the rate has a (distance)(-6) dependence, we find that the distance dependence in this case is quite different. Our calculation of rate in the case of the two dyes, pyrene and nile blue, shows that the distance dependence is Yukawa type. We have also studied the effect of doping on energy transfer to graphene. Doping does not modify the rate for electronic excitation energy transfer significantly. However, in the case of vibrational transfer, the rate is found to be increased by an order of magnitude due to doping. This can be attributed to the nonzero density of states at the Fermi level that results from doping.  相似文献   

6.
The ?-X electronic absorption spectrum of propargyl peroxy radical has been recorded at room temperature by cavity ring-down spectroscopy. Electronic structure calculations predict two isomeric forms, acetylenic and allenic, with two stable conformers for each. The acetylenic trans conformer, with a band origin at 7631.8 ± 0.1 cm(-1), is definitively assigned on the basis of ab initio calculations and rotational simulations, and possible assignments for the acetylenic gauche and allenic trans forms are given. A fourth form, allenic cis, is not observed. Simulations based on calculated torsional potentials predict that the allenic trans form will have a long, poorly resolved progression in the OOCC torsional vibration, consistent with experimental observations.  相似文献   

7.
Graphene films grown on the copper foils using chemical vapor deposition have been emphasized in the previous scientific studies and technical applications because of the high quality/cost ratio. However, no enough attention has been paid to the fundamentally important issue on the stability of graphene/copper interface compared with quality of the grown graphene films, though the properties of graphene/metal interface largely affect the Ohmic contacts in graphene‐based electronics (e.g. high‐frequency graphene transistors). Here, we investigated the electronic structure of graphene/copper interface which has been stored in the ambient conditions for different periods. Raman and photoelectron spectroscopic data indicated that the oxygen species do not prefer to adsorb on the graphene surface but insert into the graphene/copper interface. This results in the p‐doping of graphene, formation of the surface positive dipole, and energy upshift of the graphene's Dirac point. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

9.
Graphene is one of the most promising materials in nanotechnology and has attracted worldwide attention and research interest owing to its high electrical conductivity, good thermal stability, and excellent mechanical strength. Perfect graphene samples exhibit outstanding electrical and mechanical properties. However, point defects are commonly observed during fabrication which deteriorate the performance of graphene based-devices. The transport properties of graphene with point defects essentially depend on the imperfection of the hexagonal carbon atom network and the scattering of carriers by localized states. Furthermore, an in-depth understanding of the effect of specific point defects on the electronic and transport properties of graphene is crucial for specific applications. In this work, we employed density functional theory calculations and the non-equilibrium Green's function method to systematically elucidate the effects of various point defects on the electrical transport properties of graphene, including Stone-Waals and inverse Stone-Waals defects; and single and double vacancies. The electrical conductance highly depends on the type and concentration of point defects in graphene. Low concentrations of Stone-Waals, inverse Stone-Waals, and single-vacancy defects do not noticeably degrade electron transport. In comparison, DV585 induces a moderate reduction of 25%–34%, and DV55577 and DV5555-6-7777 induce significant suppression of 51%–62% in graphene. As the defect concentration increases, the electrical conductance reduces by a factor of 2–3 compared to the case of graphene monolayers with a low concentration of point defects. These distinct electrical transport behaviors are attributed to the variation of the graphene band structure; the point defects induce localized states near the Fermi level and result in energy splitting at the Dirac point due to the breaking of the intrinsic symmetry of the graphene honeycomb lattice. Double vacancies with larger defect concentrations exhibit more flat bands near the Fermi energy and more localized states in the defective region, resulting in the presence of resonant peaks close to the Fermi energy in the local density of states. This may cause resonant scattering of the carriers and a corresponding reduction of the conductance of graphene. Moreover, the partial charge densities for double vacancies and point defects with larger concentrations exhibit enhanced localization in the defective region that hinder the charge carriers. The electrical conductance shows an exponential decay as the defect concentration and energy splitting increase. These theoretical results provide important insights into the electrical transport properties of realistic graphene monolayers and will assist in the fabrication of high-performance graphene-based devices.  相似文献   

10.
Since the discovery of graphene many studies focused on its functionalization by different methods. These strategies aim to find new pathways to overcome the main drawback of graphene, a missing band-gap, which strongly reduces its potential applications, particularly in the domain of nanoelectronics, despite its huge and unequaled charge carrier mobility. The necessity to contact this material with a metal has motivated a lot of studies of metal/graphene interactions and has led to the discovery of the intercalation process very early in the history of graphene. Intercalation, where the deposited atoms do not stay at the graphene surface but intercalate between the top layer and the substrate, may happen at room temperature or be induced by annealing, depending of the chemical nature of the metal. This kind of mechanism was already well-known in the earlier Graphite Intercalation Compounds (GICs), particularly famous for one current application, the Lithium-ion Battery, which is simply an application based on the intercalation of Lithium atoms between two sheets of graphene in a graphite anode. Among numerous discoveries the GICs community also found a way to obtain graphite with superconducting properties by using intercalated alkali metals. Graphene is now a playground to “revisit” and understand all these mechanisms and to discover possible new properties of graphene induced by intercalation. For example, the intercalation process may be used to decouple the graphene layer from its substrate, to change its doping level or even, in a more general way, to modify its electronic band structure and the nature of its Dirac fermions. In this paper we will focus on the functionalization of graphene by using intercalation of metal atoms but also of molecules. We will give an overview of the induced modifications of the electronic band structure possibly leading to spin-orbit coupling, superconductivity, …We will see how this concept of functionalization is also now used in the framework of other 2D materials beyond graphene and of van der Waals heterostructures based on these materials.  相似文献   

11.
Two-dimensional(2D) materials with a high density and low power consumption have become the most popular candidates for next-generation semiconductor electronic devices. As a prototype 2D material, graphene has attracted much attention owing to its stability and ultrahigh mobility. However, zero band gap of graphene leads to very low on-off ratios and thus limits its applications in electronic devices, such as transistors. Although some new 2D materials and doped graphene have nonzero band gaps, the electronic mobility is sacrificed. In this study, to open the band gap of graphene with high electronic mobility, the structure and property of BN-doped graphene were evaluated using first-principles calculations. The formation energies indicate that the six-membered BN rings doped graphene has the most favorable configuration. The band structures show that the band gaps can be opened by such type of doping. Also, the Dirac-cone-like band dispersion of graphene is mostly inhibited, ensuring high electronic mobility. Therefore, codoping BN into graphene might provide 2D materials with nonzero band gaps and high electronic mobility.  相似文献   

12.
Thiazole and its derivatives are of considerable interest because they act as important constituents of many biomolecules, including antibiotics, vitamins, antiarhitritics, sulphatiazoles, etc. [1,2] Thus we were prompted to ex plore new compounds containing two or more thiazole groups using different linkers. The selection of the linkers is crucial, so we consider two aspects: the first is the existing function of linker, and the second is the availability of the starting materials from commercial sources. Herein, seventeen new compounds of thiazole derivatives have been synthesized and determined by IR, 1H NMR, 13C NMR and element analysis.  相似文献   

13.
Graphene, the single layer of hexagonally coordinated carbon, is a two-dimensional material with many unusual properties; its physical realization a few years ago has caused a storm of activities in the solid state physics and materials science communities. The intriguing “massless Dirac Fermion” character of its charge carriers renders graphene a unique study object in condensed matter physics, and we discuss how surface-related techniques such as photoemission, STM and LEED play a prominent role in these investigations. We report on experimental studies of the growth and electronic structure of epitaxial single and few layer graphene on silicon carbide. The unusual band structure of single layer graphene and its evolution as layers are added towards bulk graphite is studied. In the special case of the bilayer, the opening of a gap by inducing an asymmetry through the influence of doping is examined. Finally, the influence of many body processes on the spectral function is discussed on the basis of high resolution photoemission data. The discussion of these aspects gives a comprehensive overview of the electronic structure of graphene as examined by experiment.  相似文献   

14.
15.
可穿戴设备的兴起使得对柔性器件的需求日益提高,柔性导电材料作为可穿戴器件的重要组成部分而成为研究的热点。传统的电极材料主要是金属,因金属材料本身不具有柔性,一般通过降低金属层厚度以及设计波纹结构等策略实现其在柔性器件中的应用,其加工程序复杂,成本较高。以碳纳米管和石墨烯为代表的纳米碳材料兼具良好的柔性和优异的导电性,且具有化学稳定、热稳定、光学透明性等优点,在柔性导电材料领域展现了极大的应用潜力。本文简要综述了近年来纳米碳材料在柔性导电材料领域的研究进展,首先介绍了碳纳米管基柔性导电材料,分别包括基于碳纳米管水平阵列、碳纳米管垂直阵列、碳纳米管薄膜、碳纳米管纤维的柔性导电材料;继而介绍了石墨烯基柔性导电材料,包括基于剥离法制备的石墨烯和化学气相沉积法制备的石墨烯以及石墨烯纤维基柔性导电材料;并简述了碳纳米管/石墨烯复合柔性导电材料;最后论述了纳米碳材料基柔性导电材料所面临的挑战并展望了其未来发展方向。  相似文献   

16.
Using first-principles calculations, we investigate the structural, electronic and magnetic properties of triwing zigzag graphene nanoribbons (TW-ZGNRs), as well as the electric field effects on their electronic structures. The TW-ZGNRs have comparable energetic stabilities to the normal ZGNRs and exhibit fascinating junction-dependent electronic properties. With the sp(2) hybridized junctions, the TW-ZGNRs undergo a Peierls distortion and behave as ferromagnetic metals. While the TW-ZGNRs with sp(3) hybridized junctions become semiconductors, which have a ferrimagnetic ground state. An external electric field can further modulate the band structures of semiconducting TW-ZGNRs. The parallel electric field directly moves the flat bands around the Fermi level, while the perpendicular field controls the edge states at the ribbon wings. By these electric field modulations, the band gaps are effectively tuned and half-metallicity can be induced into TW-ZGNRs. Our studies demonstrate that the junctions play an important role in the electronic structures of TW-ZGNRs, which have well-tunable electronic and magnetic properties for potential applications in nanoelectronics and spintronics.  相似文献   

17.
The band structure of ten single-walled gold nanotubes of different radius and chirality angle have been calculated by the linearized augmented cylindrical wave method. For all tubes, the Fermi level crosses the half-filled band; therefore, the tubes are characterized by a metallic electronic structure. The band structure of the nanotubes changes relatively weakly with a change in nanotube structure. The valence band width for all the tubes is 9.1 eV. The density of states at the Fermi level remains unaltered with a change in chirality angle and decreases by 30% with an increase in radius from 3 to 12 Å.  相似文献   

18.
陈熙  张胜利 《物理化学学报》2018,34(9):1061-1073
二维碳材料因其独特的性质成为凝聚态物理、纳米电子学、生物医药等领域的前沿研究热点。石墨二炔具有天然的半导体特性及独特的大孔网状结构,在纳米电子器件和生物传感方面比石墨烯更具优势。本文使用第一性原理计算研究了单层石墨二炔的纳米带电子输运性质和及石墨二炔对小分子的吸附。我们考虑用掺杂3d金属原子的方法来增强对分子的吸附力。选择在石墨二炔表面吸附能较大的钪(Sc)、钛(Ti)原子,确定石墨二炔表面Sc、Ti单原子在室温下的稳定性,研究了Sc、Ti掺杂石墨二炔用于分子检测的潜在可能。从能带、载流子浓度等方面全面探讨了Sc、Ti掺杂石墨二炔对甲醛分子(HCHO)的响应。又进一步研究了石墨二炔与氨基酸分子间相互作用,发现色散力在相互作用中占主导地位。研究了吸附氨基酸对石墨二炔电子输运的影响,探讨石墨二炔在生物传感方面的潜在应用。  相似文献   

19.
石墨炔特殊的电子结构和孔洞结构使其在信息技术、电子、能源、催化以及光电等领域具有潜在、重要的应用前景。近几年石墨炔的基础和应用研究已取得了重要成果,并迅速成为了碳材料研究中的新领域。石墨炔中炔键单元的高活性为其化学修饰与掺杂提供了良好的平台。在这篇综述中,我们将重点介绍石墨炔的非金属杂原子掺杂、金属原子修饰以及表面改性,并深入探讨掺杂与衍生化对石墨炔材料的电子性质的影响及其对光电化学催化性能的协同增强。  相似文献   

20.
We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ~0.4 eV above E(D).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号