共查询到20条相似文献,搜索用时 2 毫秒
1.
Prof. Lili Liu Zhixuan Han Yifan Lv Prof. Chunling Xin Prof. Xiaojing Zhou Dr. Lei Yu Prof. Xishi Tai 《ChemistryOpen》2022,11(3)
Superior catalytic performance for selective 1,3‐butadiene (1,3‐BD) hydrogenation can usually be achieved with supported bimetallic catalysts. In this work, Pt−Co nanoparticles and Pt nanoparticles supported on metal–organic framework MIL‐100(Fe) catalysts (MIL=Materials of Institut Lavoisier, PtCo/MIL‐100(Fe) and Pt/MIL‐100(Fe)) were synthesized via a simple impregnation reduction method, and their catalytic performance was investigated for the hydrogenation of 1,3‐BD. Pt1Co1/MIL‐100(Fe) presented better catalytic performance than Pt/MIL‐100(Fe), with significantly enhanced total butene selectivity. Moreover, the secondary hydrogenation of butenes was effectively inhibited after doping with Co. The Pt1Co1/MIL‐100(Fe) catalyst displayed good stability in the 1,3‐BD hydrogenation reaction. No significant catalyst deactivation was observed during 9 h of hydrogenation, but its catalytic activity gradually reduces for the next 17 h. Carbon deposition on Pt1Co1/MIL‐100(Fe) is the reason for its deactivation in 1,3‐BD hydrogenation reaction. The spent Pt1Co1/MIL‐100(Fe) catalyst could be regenerated at 200 °C, and regenerated catalysts displayed the similar 1,3‐BD conversion and butene selectivity with fresh catalysts. Moreover, the rate‐determining step of this reaction was hydrogen dissociation. The outstanding activity and total butene selectivity of the Pt1Co1/MIL‐100(Fe) catalyst illustrate that Pt−Co bimetallic catalysts are an ideal alternative for replacing mono‐noble‐metal‐based catalysts in selective 1,3‐BD hydrogenation reactions. 相似文献
2.
Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates 下载免费PDF全文
M. Sc. Lisa Offner‐Marko Dr. Alexis Bordet M. Sc. Gilles Moos Dr. Simon Tricard M. Sc. Simon Rengshausen Prof. Dr. Bruno Chaudret Dr. Kylie L. Luska Prof. Dr. Walter Leitner 《Angewandte Chemie (International ed. in English)》2018,57(39):12721-12726
Bimetallic iron–ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL‐SO3H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH2 units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff–Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL‐SO3H materials opens a general approach to multifunctional catalytic systems (MM′@SILP+IL‐func). 相似文献
3.
Gas phase dehydrocyclization of diphenylamine (DPA) to carbazole over monometallic and bimetallic 0.4 wt% Pt-based catalysts in a fixed bed reactor was studied in the presence of hydrogen at a temperature of 550 oC. Alumina and carbon supported Pt catalysts showed very high initial activity (> 95%). The selectivity for carbazole over carbon supported Pt catalysts was slightly lower. Doping of the catalyst with potassium led to an increase in the selectivity for carbazole by 15%. Bimetallic Pt-Sn catalysts prepared by co-impregnation were less selective than catalysts prepared by successive impregnation. The selectivity for carbazole over bimetallic Pt-Sn catalysts prepared by successive impregnation was 75%, but their activity decreased with increased Sn loading. Highly active and reasonably selective catalysts were Ir-doped bimetallic Pt-based catalysts. The conversion of diphenylamine over Pt-Ir catalysts was above 98% and the selectivity for carbazole was nearly 55%, while the lifetime was much longer. 相似文献
4.
采用化学共还原方法制备了石墨烯负载Pt/Co双金属纳米颗粒(GBNPS)催化剂,并将其用于催化硼氢化钾(KBH4)水解制氢.采用透射电子显微镜(TEM)、X射线衍射(XRD)仪和X射线光电子能谱(XPS)表征了该催化剂,并研究了双金属纳米颗粒的化学组成对其催化KBH4水解制氢性能的影响.结果表明,制备的石墨烯负载Pt/Co双金属纳米颗粒平均粒径为3.2~3.9 nm,其中石墨烯负载Pt20Co80双金属纳米颗粒的催化活性最高,35℃时制氢活性可达35973 molH2·h-1·mol-1Pt,且具有良好的耐久性,催化KBH4水解反应的表观活化能为36 kJ/mol. 相似文献
5.
Jincan Kang Shuli Zhang Qinghong Zhang Dr. Ye Wang Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(14):2565-2568
Diesel do nicely : The title system is a highly selective Fischer–Tropsch catalyst for the production of C10–C20 hydrocarbons (diesel fuel). The C10–C20 selectivity strongly depends on the mean size of the Ru nanoparticles. Nanoparticles with a mean size around 7 nm exhibit the highest C10–C20 selectivity (ca. 65 %) and a relatively higher turnover frequency for CO conversion.
6.
以十五元三烯氮杂大环改性的不同代数聚丙烯亚胺树状聚合物(Gn-M,n=2,3,4)为模板,通过共络合-还原方法制备了一系列钌/铑双金属纳米粒子[Gn-M(RuxRh100-x)DTNs,x为Ru摩尔分数],并将其应用于丁腈橡胶(NMR)的催化氢化.用紫外-可见光谱(UV-Vis)、X射线衍射分析(XRD)及X射线能谱(EDS)表征DTNs的金属组成和结构,结果表明,DTNs上的双金属离子被还原成金属单质并负载于Gn-M上;粒度分析结果表明,G2-M(Ru50Rh50),G3-M(Ru50Rh50)和G4-M(Ru50Rh50)DTNs的平均粒径分别为7.5,8.1和4.5 nm.凝胶测试及核磁共振波谱(1H NMR)结果表明,Ru/Rh DTNs催化剂对丁腈橡胶的催化氢化反应具有良好的选择性.当以G4-M(Ru30Rh70)DTNs为催化剂时,NBR的氢化度最高可达99.51%,循环使用2次后,丁腈橡胶的氢化度仍可达到90.58%. 相似文献
7.
采用高压原位FT -IR技术 ,对比研究了CO加H2 反应条件下Rh/SiO2 和Rh/NaY催化剂表面反应中间物种 .在Rh/SiO2 表面上 ,无论在常压还是在 1.0MPa合成气中 ,只观察到线式和桥式吸附CO .而在常压合成气中 ,Rh/NaY上不仅存在上述CO吸附物种 ,而且还有孪生型的Rh(I) (CO) 2 和少量Rh6 (CO) 16 ;当合成气压力升至 1.0MPa后 ,Rh(I) (CO) 2 迅速转化成Rh6 (CO) 16 和在 2 0 42cm-1产生吸收的单核羰基Rh物种 ,与此同时催化剂表面还生成了单齿和双齿乙酸根物种 ;这些在高压下生成的物种在合成气压力重新降回到常压时依然稳定存在 .研究Rh/NaY上合成气反应表面物种与H2 的反应行为表明单齿乙酸根很可能是反应的活性中间物 .这些结果说明Rh/NaY催化剂在高压合成气中的重构是诱发选择生成乙酸反应的基础 相似文献
8.
9.
Christos Raptis Hermenegildo Garcia Prof. Dr. Manolis Stratakis Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(17):3133-3136
ReacTiO 2 ns for rings : Gold nanoparticles supported on TiO2 are used as a novel heterogeneous catalyst for the isomerization of epoxides to allylic alcohols by a concerted mechanism (see scheme). The reaction proceeds in high yields and the product selectivity is often remarkable.
10.
以ISOBAM-104为保护剂,采用共还原法制备了一系列不同组成的Rh/Co双金属纳米颗粒(BNPs)。采用紫外-可见吸收光谱、透射电镜及高分辨透射电镜对纳米颗粒的结构及组成进行了表征。结果表明,所制备的Rh/Co BNPs的粒径小于6.0nm,具有合金结构。催化制氢实验结果表明,Rh_(20)Co_(80)BNPs具有最高的催化制氢活性,其TOF值可高达12880mol-H_2·h~(-1)·mol-Rh~(-1),远高于Rh和Co单金属纳米颗粒的催化活性。 相似文献
11.
K. Sai Bhavani T. Anusha J. V. Shanmukha Kumar Pradeep Kumar Brahman 《Electroanalysis》2021,33(1):97-110
Direct alcohol fuel cells (DAFCs) have been recently playing a pivotal role in electrochemical energy sources and portable electronics. Research in DAFCs has proceeded to engage major attention due to their high catalytic activity, long-term stability, portability, and low cost. Herein, we present a facile surfactant-free route to anchor bimetallic Pd−W nanoparticles supported fullerene-C60 catalyst (Pd-W@Fullerene-C60) for high-performance electrooxidation of alcohols (methanol & ethanol) for DAFCs applications. Structural, elemental composition, and morphological analysis of the proposed catalyst were carried out using UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy-dispersive x-ray spectroscopy (EDX). Electrochemical properties such as electrochemical activity, electrochemical active surface area (ECSA), and long-term stability of the Pd-W@Fullerene-C60 catalyst for ethanol and methanol oxidation in the alkaline medium were explored by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). Results revealed that the proposed catalyst showed enlarged ECSA, tremendous electrocatalytic activity, high poison tolerance limit, good reproducibility, and enhanced long-term stability as compared to the monometallic catalyst and commercially available catalyst (Pt/C) towards ethanol and methanol oxidation reaction. This enhanced potentiality of the Pd-W@Fullerene-C60 catalyst is due to the synergistic effect of W−Pd nanoparticles and excellent electron kinetic from fullerene support material. These findings strongly suggest the Pd-W@Fullerene-C60 catalyst as potential anode material for the alcohol oxidation reaction. 相似文献
12.
Yangyang Li Junjie Huang Yanping Zheng Mingshu Chen 《Chemical record (New York, N.Y.)》2019,19(7):1432-1443
It is well known that there is a critical relationship between the surface composition and catalytic performance for a bimetallic catalyst. However, in most cases, the surface composition is obviously different from that of the bulk. Moreover, the surface is normally reconstructed under reaction conditions. In this personal account, our recent progresses in determining the surface compositions of oxide supported bimetal catalysts by high‐sensitivity low energy ion scattering spectroscopy (HS‐LEIS) and X‐ray photoemission spectroscopy (XPS) are summarized. Phase diagrams of the surface compositions under various conditions as a function of the bulk composition are established and compared. It is found that oxidation induces de‐alloying and enrichment of PdO, CuO, SnO2 on the surface, while H2 reduction results in re‐alloying. The addition of the second component not only modifies the nature of the active site, but also varies the dispersion of the active components. The support effects are discussed. The compared studies reveal that HS‐LEIS can achieve a more reliable surface composition for oxide supported catalysts. 相似文献
13.
Chlorobenzene hydrodechlorination in liquid phase has been studied. Chlorine released during the reaction inhibits conversion in large metallic particles. It was found comparing the behavior of Pd/SiO2, Pd/Al2O3 and Pd/C catalysts that the support plays the role of a chlorine trap. The activity for Pt, Rh and Pd at similar dispersions corresponds to the chlorine adsorption affinity of the metals. 相似文献
14.
15.
Chiral Nanoparticles/Lewis Acids as Cooperative Catalysts for Asymmetric 1,4‐Addition of Arylboronic Acids to α,β‐Unsaturated Amides 下载免费PDF全文
Dr. Tomohiro Yasukawa Yuuki Saito Dr. Hiroyuki Miyamura Prof. Dr. Shū Kobayashi 《Angewandte Chemie (International ed. in English)》2016,55(28):8058-8061
Cooperative catalysts consisting of chiral Rh/Ag nanoparticles and Sc(OTf)3 have been developed that catalyze asymmetric 1,4‐addition reactions of arylboronic acids with α,β‐unsaturated amides efficiently. The reaction has been considered one of the most challenging reactions because of the low reactivity of the amide substrates. The new catalysts provide the desired products with outstanding enantioselectivities (>98 % ee) in the presence of low loadings (<0.5 mol %) of the catalyst. 相似文献
16.
Co/Fe催化剂乙醇裂解和部分氧化制氢研究 总被引:5,自引:2,他引:5
采用共沉淀法制备的Co/Fe催化剂催化乙醇裂解和部分氧化制氢反应,考察了反应温度对两种途径反应的影响。结果发现,Co/Fe催化剂对乙醇部分氧化制氢显示出较高的氢选择性,且稳定性较好;该催化剂对乙醇裂解制氢也具有较高的氢选择性,但其稳定性很很差。XRD表征结果表明,在催化乙醇部分氧化反应后,Co70Fe30催化剂中存在CoFe合金和CoO相;而催化乙醇裂解反应后,Co70Fe30催化剂中仅存在CoFe合金,即CoFe合金可能是裂解反应的活性组分。 相似文献
17.
采用简单的原位还原合成方法,利用具有温和还原性能的氨硼烷作为还原剂,在室温下一步还原氧化石墨烯和氯化钴混合溶液制备了还原氧化石墨烯负载钴纳米复合材料催化剂. 利用所制备的钴/还原氧化石墨烯催化剂催化氨硼烷水解制氢,发现钴/还原氧化石墨烯具有优异的催化性能. 相对于没有负载的钴纳米粒子以及采用硼氢化钠作为还原剂制备的钴/还原氧化石墨烯催化剂,采用氨硼烷还原制备的钴/还原氧化石墨烯催化剂表现出更加优越的催化性能. 动力学测试表明,钴/还原氧化石墨烯催化氨硼烷水解反应为零级反应,同时钴/还原氧化石墨烯催化剂催化氨硼烷水解反应的活化能为27.10 kJ·mol-1,低于大部分已报道的其它催化剂,甚至一些贵金属催化剂的活化能. 钴/还原氧化石墨烯催化剂有着稳定的循环使用性,特别是其具有的磁性使得它能够直接从溶液中通过磁力回收,极具应用前景. 这种简单有效的合成方法有望推广到其它的金属-还原氧化石墨烯纳米复合材料体系. 相似文献
18.
Various alcohols and phenols were trimethylsilylated in excellent yields using hexamethyldisilazane in the presence of catalytic amounts of environmentally friendly, hydrophobic, highly thermal stable, and completely heterogeneous sulfonic acid functionalized mesostructured SBA-15 in dichloromethane at ambient temperature. Primary, bulky secondary, tertiary, and phenolic hydroxyl functional groups were transformed to the corresponding trimethylsilyl ethers in excellent yields. The simple experimental procedure was accompanied by easy recovery and the catalyst was reusable (at least 18 reaction cycles); these are attractive features of this protocol. 相似文献
19.
以Mo改性的Rh/AC(Rh-MoOx/AC)为催化剂,研究了四氢糠醇加氢开环制备1,5-戊二醇的催化性能。采用TEM、XPS和NH3吸附热量表征催化剂,并考察了反应工艺条件。表征结果表明,低价态Mo所提供的中等强度的酸中心是加入Mo可提高催化剂活性的主要原因。催化反应结果表明:以水为溶剂,以nMo/nRh=0.15的Rh-MoOx/AC为催化剂,还原温度为550℃,反应温度为120℃,反应压力为8 MPa,反应时间为10 h,四氢糠醇的转化率为64%,1,5-戊二醇的选择性为100%。 相似文献
20.
以Mo改性的Rh/AC (Rh-MoOx/AC)为催化剂,研究了四氢糠醇加氢开环制备1,5-戊二醇的催化性能.采用TEM、XPS和NH3吸附热量表征催化剂,并考察了反应工艺条件.表征结果表明,低价态Mo所提供的中等强度的酸中心是加入Mo可提高催化剂活性的主要原因.催化反应结果表明:以水为溶剂,以nMo/nRh=0.15的Rh-MoOx/AC为催化剂,还原温度为550 ℃,反应温度为120 ℃,反应压力为8 MPa,反应时间为10 h,四氢糠醇的转化率为64%,1,5-戊二醇的选择性为100%. 相似文献