首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The spin–spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates.  相似文献   

3.
The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin‐sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2‐butanol, and these solvates with (R)‐ and (S)‐alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both from dia‐ to para‐ and from para‐ to diamagnetic states in heating and cooling modes respectively. Furthermore, the Mössbauer spectroscopy directly visualizes how the metallic centres in a chiral coordination framework differently sense the interaction with guests of different chiralities.  相似文献   

4.
The orientations of liquid crystals (LCs) anchored on monolayers formed from mixtures of chiral versus achiral molecules were compared. Changes in the enantiomeric excess of mixed monolayers of chiral dipeptides gave rise to continuous changes in the orientations of nematic LCs, allowing arbitrary tuning of the azimuthal orientations of LCs over a range of ≈100°. In contrast, the same LCs exhibited discontinuous changes in orientation on surfaces presenting mixtures of achiral molecules. These striking differences in the anchoring of LCs on surfaces presenting chiral versus achiral molecules provide insights into the molecular origins of ordering transitions of LCs, and provide new principles based on chiral monolayers for the rational design of surfaces that permit continuous tuning of the orientations of LCs.  相似文献   

5.
Helical carbon and graphite films from helical poly(3,4‐ethylenedioxythiophene) (H‐PEDOT) films synthesized through electrochemical polymerization in a chiral nematic liquid‐crystal (N*‐LC) field are prepared. The microscope investigations showed that the H‐PEDOT film synthesized in the N*‐LC has large domains of one‐handed spiral morphology consisting of fibril bundles. The H‐PEDOT films exhibited distinct Cotton effects in circular dichroism spectra. The highly twisted N*‐LC with a helical pitch of smaller than 1 μm produced the H‐PEDOT film with a highly ordered morphology. The spiral morphologies with left‐ and right‐handed screws were observed for the carbon films prepared from the H‐PEDOT films at 800 °C and were well correlated with the textures and helical pitches of the N*‐LCs. The spiral morphologies of the precursors were also retained even in the graphite films prepared from the helical carbon films at 2600 °C.  相似文献   

6.
Thermal conductivity (k) and thermal diffusivity (D) of the 9CB liquid crystal have been simultaneously determined by a photopyroelectric (PPE) technique in the temperature range from 308 K to 332 K where two different phase transitions occur. The measurements have been performed on oriented samples and the k and D anisotropy has been studied. The behaviour of the macroscopic order parameter vs. temperature has been determined and the order of the phase transitions checked. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Porous single crystals which combine ordered lattice structures and disordered inter‐connected pores would provide an alternative to create twisted surface in porous microstructures. Now, transition‐metal nitride Nb4N5 and MoN single crystals are grown on a 2 cm scale to create well‐defined active structures at twisted surfaces. High catalytic activity and stability toward non‐oxidative dehydrogenation of ethane to ethylene is observed. Unsaturated metal–nitrogen coordination structures including Nb‐N1/5, Nb‐N2/5, Mo‐N1/3, and Mo‐N1/6 at the twisted surface mainly account for the C?H activation with chemisorption of H in molecular ethane at the twisted surface, which not only improves dehydrogenation performance but also avoids the deep cracking of ethane to enhance coking resistance. 11–25 % ethane conversion and 98–99 % ethylene selectivity is demonstrated without degradation being observed even after the operation of 50 hours.  相似文献   

8.
The ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C3 conformation, the C3-symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C3 supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids. In addition, calculations at different levels (DFT, PM7, and MM3) for the 1:3 host-guest complex predict the formation of large stable columnar helical aggregates stabilized by the compact packing of the interstitial acids by π–π and CH⋅⋅⋅π interactions. The acids restrict the movement of the the star-shaped triazine cores along the stacking axis causing a template effect in the self-assembly of the complex. Theoretical predictions correlate with experimental results, since the interaction with achiral or chiral 3,4,5-(4-alkoxybenzyloxy)benzoic acids gives rise to supramolecular complexes that organize in bulk hexagonal columnar mesophases stable at room temperature with intracolumnar order. The existence of supramolecular chirality in the mesophase was determined for complexes formed by acids derived from (S)-2-octanol. Chiral aggregation was also evidenced for complexes formed in dodecane.  相似文献   

9.
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self‐assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well‐ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long‐term stable symmetry‐broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.  相似文献   

10.
11.
Organic single crystals quickly emerge as dense yet light and nearly defect-free media for emissive elements. Integration of functionalities and control over the emissive properties is currently being explored for a wide range of these materials to benchmark their performance against organic emissive materials diluted in powders or films. Here, we report mechanically flexible emissive chiral organic crystals capable of an unprecedented combination of fast, reversible, and low-fatigue responses. UV-excited single crystals of both enantiomers of the material, 4-chloro-2-(((1-phenylidene)imino)methyl)phenol, exhibit a drastic yet reversible change in the emission color from green to orange-yellow within a second and can be cycled at least 2000 times. The photoresponse was found to depend strongly on the excitation intensity and temperature. Combining chirality, mechanical compliance, rapid emission switching, multiple responses, and writability by UV light, this material provides a unique and versatile platform for developing organic crystal-based materials for on-demand signal transfer, information storage, and cryptography.  相似文献   

12.
The front cover artwork is provided by Dr Rebecca Walker of the Liquid Crystals Group at the University of Aberdeen. The image is a cartoon depiction of the formation of the heliconical chiral twist-bend nematic phase (N*TB) from its constituent bent molecules. The presence of a single enantiomer of the chiral, lactate-based liquid crystal dimers biases the formation of helices with only one handedness, unlike in the conventional NTB phase, observed for achiral molecules, for which the left- and right-handed helices are doubly degenerate. Read the full text of the Research Article at 10.1002/cphc.202200807 .  相似文献   

13.
The review summarizes the results of studies on specific features of spin relaxation of radicals in liquids in weak magnetic fields. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1642–1654, October, 2006.  相似文献   

14.
The photocontrolled phase transitions and reflection behaviors of a smectic liquid crystal, 4‐octyl‐4′‐cyanobiphenyl (8CB), tuned by a chiral azobenzene, are systematically investigated. For the smectic 8CB doped with the chiral azobenzene (1R)‐(?)‐4‐n‐hexyl‐4′‐menthylazobenzene (ABE), the initial smectic phase can be switched to cholesteric and then to isotropic upon UV irradiation due to the trans‐to‐cis photoisomerization of ABE; however, no reflection band is observed. For the smectic 8CB doped with ABE and the chiral agent (S)‐(?)‐1,1′‐binaphthyl‐2,2′‐diol (BN), a reflection band located in the short‐wavelength infrared region is observed, which disappears after further UV irradiation. For the smectic 8CB doped with ABE and a chiral agent with higher helical twisting power, (S)‐2,2′‐methylendioxy‐1,1′‐binaphthalene (DBN), a phototunable system with cholesteric pitch short enough to reflect visible light is demonstrated. With a given concentration of the chiral dopant DBN, a reversible reflection color transition is realized tuned by the isomerization of azobenzene. The reverse phase transition from isotropic to cholesteric and then to smectic can be recovered upon visible irradiation. The photocontrolled phase transitions in smectic liquid crystals and the corresponding changes in reflection band switched by photoisomerization of azobenzene may provide impetus for their practical application in optical memories, displays, and switches.  相似文献   

15.
Chiral columns formed by a helical cis‐polyphenylacetylene (PPA) derivative P1 are reversibly switched during a phase transition between two chiral columnar phases: the frustrated Φh3D‐SL phase containing four chains at low temperature and a hexagonal columnar phase Φh at high temperature, accompanied by a simultaneous conformational change. The helix–helix transition along the PPA backbone during the Φh3D‐SL‐Φh transition makes the uniaxially oriented P1 capable of reversibly and reproducibly elongating (132 %) upon heating and contracting upon cooling, exhibiting the behavior of a two‐way shape actuator.  相似文献   

16.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

17.
We examined and discuss the proton- and deuterium-decoupled carbon-13 1D spectrum of a molecule, chiral by virtue of the isotopic substitution, dissolved in a chiral oriented medium which simultaneously exhibits chiral discrimination, enantiomeric enrichment and isotope effect. Using the 1-deutero-(2',3',4',5',6'-pentadeuterophenyl)phenylmethanol orientationally ordered in a chiral nematic liquid crystal as illustrative example, we point out three important features. First, we demonstrate that the absolute assignment of the pro-R/pro-S character may be derived from the absolute configuration of the isotopically chiral analogue. Second, we report evidence that isotopic effect on (13)C chemical shift anisotropy is negligible in a weakly orienting solvent. Third, we definitely establish that the molecular orientation of prochiral C(s) symmetry molecules and their parent compounds that are chiral by virtue of the isotopic substitution is the same.  相似文献   

18.
The study of the organization of small π‐conjugated molecules is imperative to understanding and controlling its properties for various applications. Coronene bisimides (CBIs) are potential candidates for novel liquid‐crystalline materials and active n‐type semiconductor molecules in organic electronics. To understand the self‐assembly of this seldom‐studied chromophore, we have designed two derivatives of CBIs bearing chiral and achiral 3,4,5‐trialkoxyphenyl groups at the imide position, named as CBI‐GCH and CBI‐GACH , respectively. CBI‐GCH self‐assembles mainly through π‐stacking and van der Waals interactions in nonpolar methylcyclohexane to result in long 1D fibrillar stacks. The mechanism of supramolecular polymerization was probed by using chiroptical studies, which showed an isodesmic pathway for CBI‐GCH . The thermodynamic parameters that govern the self‐assembly are detailed. CBI‐GACH also shows similar self‐assembly behavior as its chiral counterpart. X‐ray diffraction studies of both molecules reveals a 2D hexagonal columnar arrangement. The coassembly of CBI‐GCH and CBI‐GACH shows chiral amplification (sergeant and soldiers experiment) with saturation at 30–50 % of the chiral derivative, which was further used to study the dynamics of the assembly. Thus, this study presents a rare report of chiral amplification in an isodesmic system.  相似文献   

19.
Chiral polycatenar 1H‐pyrazoles self‐assemble to form columnar mesophases that are stable at room temperature. X‐ray diffraction and CD studies in the mesophase indicate a supramolecular helical organization consisting of stacked H‐bonded dimers. The liquid‐crystalline compounds reported are 3,5‐bis(dialkoxyphenyl)‐1H‐pyrazoles that incorporate two or four dihydrocitronellyl chiral tails. It can be observed that the grafting of these branched chiral substituents onto the 3,5‐diphenyl‐1H‐pyrazole core has a beneficial role in inducing mesomorphism, because isomeric linear‐chain compounds are not liquid crystalline; this is not the usual scheme of behavior. Furthermore, the molecular chirality is transferred to the columnar mesophase, because preferential helical arrangements are observed. Films of the compounds are luminescent at room temperature and constitute an example of the self‐organization of nondiscoid units into columnar liquid‐crystalline assemblies in which the functional molecular unit transfers its properties to a hierarchically built superstructure.  相似文献   

20.
Two diastereoisomeric N‐doped nanographene derivatives have been efficiently prepared in two synthetic steps starting from an ethynylated hexaazatriphenylene building block. The first derivative adopts a D3‐symmetrical propeller‐shaped structure with three equivalent nanographene foils. The structure of the second diastereoisomer is C2‐symmetrical and differs from the first one by the way two peripheral nanographene foils overlap. Owing to their intertwined structures, the two N‐doped nanographenes are soluble in organic solvents and could be characterized by a combination of several analytical tools. Resolution of the D3‐symmetrical derivative has been achieved and CD measurements revealed extremely strong Cotton effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号