首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large amounts of volatile organic compounds (VOCs) are emitted into the atmosphere from both human and natural sources. A significant portion of VOCs would be oxidized via their reactions with atmospheric oxidants like OH, NO3, ozone, etc. The products of the oxidation reactions are often of low volatility and may condense to form secondary organic aerosols (SOA). To study the effect of VOC oxidation in aerosol formation, we are building an oxidation flow reactor system, which consists of (1) a 22-l aluminum chamber, (2) an ozone source with an ozone detector, (3) a UV-C (254 nm) lamp, (4) a photoionization detector to measure the effective VOC concentration, (5) various flow/concentration controlling apparatuses, and (6) a scanning mobility particle sizer to monitor the generated particles. Under the conditions of high UV and ozone levels, the oxidation process can be speeded up by orders of magnitude in this reactor. We hope to use this reactor: (i) to learn the “potential” mass of SOA that can be formed from a given VOC source like a traffic or industry site; (ii) to trace back the SOA source by utilizing the shortened reaction times; (iii) to learn the trends from VOC to SOA.  相似文献   

2.
3.
Whether a twisted intramolecular charge-transfer (TICT) state is formed is an important issue for understanding the fluorescence properties of a push-pull organic dye. Here we report a position effect of the donor substituent on the TICT state formation of aminostilbenes: namely, trans-3-(N,N-dimethylamino)-4′-cyanostilbene ( mDCS ) behaves differently from its TICT-free para isomer DCS and forms a TICT state in acetonitrile (MeCN). The TICT state of mDCS also differs from that of many previously reported aminostilbenes by twisting a C−C bond instead of a C−N bond. In addition, among the ring-bridged model compounds mDCS-N , mDCS-C1 , and mDCS-C2 , we observed an unusual electronic effect of the ring-bridging in mDCS-C2 that mitigates the impact of the TICT state on the fluorescence properties. Both the C−C bond twisting in mDCS and the ring-bridging electronic effect in mDCS-C2 provide new insights into the TICT chemistry of aminostilbenes.  相似文献   

4.
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light‐induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non‐adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.  相似文献   

5.
The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state‐of‐the‐art quantum‐chemical calculations. Even though it was suggested that this process might occur on the triplet potential‐energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1/S0 conical intersection suggests that the deexcitation should most likely occur on a sub‐picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin–orbit coupling of the S1 and T2 states in the Franck–Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.  相似文献   

6.
Incorporation of an artificial photosynthetic complex in bilayer lipid membrane by using seven porphyrin units through a supramolecular approach.  相似文献   

7.
Andreas Dreuw 《Chemphyschem》2006,7(11):2259-2274
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.  相似文献   

8.
The influence of the composition of oxides supports on the specific electroactive surface area of Pt in the catalysts, the platinum nanoparticles dispersion, and Pt contents in the catalysts was studied. The Sb-doped SnO2 oxides with various Sb-doping levels were prepared as a supports of platinum catalysts in polymer electrolyte membrane fuel cells. Density functional theory simulation of Ti, Sb, and Ru doping of tin dioxide and interaction of the doped surfaces with platinum cluster Pt19 have been carried out. All calculations were performed in PBE exchange–correlation functional, with periodic boundary conditions and projector-augmented waves (PAW) basis set. The calculation results were compared with the experimental data X-ray diffraction and transmission electron microscopy (TEM). It was shown that Sb doping of tin dioxide (in quantity of less than 10%, that is, the quantity which cannot provoke significant defects of crystal structure of the supports) leads to a significant increase in a number of platinum clusters adsorbed from the colloidal solution onto the supports surface which results to an increase of the platinum cluster interaction with the supports. The calculated and experimental results are in close fit.  相似文献   

9.
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi‐valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system.  相似文献   

10.
In this paper, we present a model of potential energy surface for the H2O HCl system, consisting in the exact transformation of quantum chemical input data related to a minimal number of significant configurations. Both molecules are assumed as rigid. The interaction potential is given by an expansion in real spherical harmonics depending on the distance between the two centers of mass of the molecules and on four angles that define their mutual orientation. The main target of this work is the construction of a model of potential energy surface that requires a limited number of single energy points, which is suitable for applications to classical and quantum molecular dynamics simulations, permitting interpolation and further implementation of different sets of input data.  相似文献   

11.
In this work, we focused on the kinetics of a one-dimensional Ising system (1DIS) with constant nearest-neighbor interaction (NNI). The exact solution of both thermodynamics and kinetics of this system under quasi-chemical approximation (QCA) had been shown in the literature, and the equilibrium solution was exact. In this work, it was discussed why QCA applied the best in the case of 1DIS with constant NNI. Furthermore, extension had been made to discuss that due to this special reason, perhaps the kinetics of the system under QCA is the correct steady-state kinetics. Inspired by this observation, the activity and activity coefficients of the system was studied closely to re-examine the form of the equation of motion under QCA. A novel concept—the instantaneous activities and the corresponding instantaneous activity coefficients—was introduced, and in terms of these quantities the kinetics seemed to be much simpler and physically more meaningful. The chevron plot of this system was also discussed and new way of looking at the rollover of chevron plots was presented.  相似文献   

12.
The photophysical and photochemical properties of sulfoxide and sulfone derivatives of hemithioindigo photoswitches are scrutinized and compared to the unoxidized parent chromophores. Oxidation results in significantly blue-shifted absorptions and mostly reduction of photochromism while thermal stabilities of individual isomers remain largely unaltered. Effective photoswitching takes place at shorter wavelengths compared to parent hemithioindigos and high isomeric yields can be obtained reversibly in the respective photostationary states. Reversible solid-state photoswitching is observed for a twisted sulfone derivative accompanied by visible color changes. These results establish oxidized hemithioindigo photoswitches as promising and versatile tools for robust light-control of molecular behavior for a wide range of applications.  相似文献   

13.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

14.
15.
A Hirshfeld decomposition scheme of the Hartree-Fock total molecular energy into atomic energies is presented. The calculations are performed by direct numerical integration and the results are compared for a set of 28 molecules containing different kinds of atoms. The calculated atomic energies show a strong dependency on changes of atomic electron population and hybridization. Linear correlations are found between the energy and the population for H, these being related to the electronegativity of this atom and to the external potential created by the remaining atoms. The proposed energy partitioning scheme appears to be useful for studies such as proton acidity, the anomeric effect and group transferability, and allows atomic virial ratios to be obtained. Finally, the atomic potential energies are found to mimic trends based on exact expressions as well as trends displayed by molecular quantities, thus lending credibility to the partitioning scheme used.  相似文献   

16.
We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time‐dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3) state is immediately followed by ultrafast decay to the nπ* (S1) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH. and OH. radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non‐radiative decay and an electron transfers back to the OH. radical. Proton transfer from BAH+ to OH? restores the initial situation, BA in water.  相似文献   

17.
18.
19.
The molecular box 1 comprises of two zinc-porphyrin metallacycles connected by two free-base 4'-trans-dipyridylporphyrins, axially coordinated to the zinc centers. The photophysics of 1 were studied in chloroform by emission and ultrafast absorption spectroscopy. In the molecular box, fast singlet energy transfer (main component, tau=32 ps) is observed to occur from the zinc-porphyrin metallacycles to the free-base chromophores. From wavelength-dependent spectrofluorimetric data, the efficiency of the energy-transfer (ET) process is estimated as 0.5. The lower-than-unity value is tentatively attributed to the possibility of a competing electron-transfer quenching pathway. Molecular box 1 can be considered to be a simple, self-assembling, six-chromophore antenna system. It has an inner cavity, 11.4 Angstrom wide, that could be used, in principle, to host a variety of guest molecules and obtain higher-order assemblies.  相似文献   

20.
Transient UV/Vis absorption spectroscopy is used to study the primary dynamics of the ring‐A methyl imino ether of phycocyanobilin (PCB‐AIE), which was shown to mimic the far‐red absorbance of the Pfr chromophore in phytochromes (R. Micura, K. Grubmayr, Bioorg. Med. Chem. Lett.­ 1994, 4, 2517–2522 ). After excitation at 615 nm, the excited electronic state is found to decay with τ1=0.4 ps followed by electronic ground‐state relaxation with τ2=1.2 and τ3=6.7 ps. Compared with phycocyanobilin (PCB), the initial kinetics of PCB‐AIE is much faster. Thus, the lactim structure of PCB‐AIE seems to be a suitable model that could not only explain the bathochromic shift in the ground‐state absorption but also the short reaction of the Pfr as compared to the Pr chromophore in phytochrome. In addition, the equivalence of ring‐A and ring‐D lactim tautomers with respect to a red‐shifted absorbance relative to the lactam tautomers is demonstrated by semiempirical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号