首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Herein, chiral deep eutectic solvents (DES) are prepared by lauric acid as hydrogen bond donors (HBD) and chiral menthol as hydrogen bond acceptors (HBA). When achiral fluorescent molecules are dopedin the menthol-based chiral DES, they emit circularly polarized luminescence (CPL) with handedness controlled by the molecular chirality (l or d ) of menthol. Remarkably, the strategy is universal and a series of achiral fluorescent molecules can be endowed with CPL activity, showing a full-color and white CPL upon appropriate mixing, which paves the way to prepare white CPL materials. Interestingly, CPL appears only in a certain temperature range in the DES. Variable-temperature spectra and other characterization methods reveal that the H-bond network in the chiral DES plays an important role in inducing CPL. This work unveils how the interior structure as well as the hydrogen-bond network of a chiral DES can transfer its chirality to achiral luminophores for the first time and realizes a full-color and white CPL in a DES.  相似文献   

2.
A solvation shell may adapt to the presence of a chiral solute by becoming chiral. The extent of this chirality transfer and its dependence on the solute and solvent characteristics are explored in this article. Molecular dynamics simulations of solvated chiral analytes form the basis of the analysis. The chirality induced in the solvent is assessed based on a series of related chirality indexes originally proposed by Osipov [M. A. Osipov et al., Mol. Phys. 84, 1193 (1995)]. Two solvents are considered: Ethanol and benzyl alcohol. Ethanol provides insight into chirality transfer when the solvent interacts with the solute primarily by a hydrogen bond. Several ethanol models have been considered starting with a nonpolarizable model, progressing to a fluctuating charge model, and finally, to a fully polarizable model. This progression provides some insights into the importance of solvent polarizability in the transfer of chirality. Benzyl alcohol, by virtue of the aromatic ring, increases the number of potential solvent-solute interactions. Thus, with these two solvents, the issue of compatibility between the solvent and solute is also considered. The solvation of three chiral solutes is examined: Styrene oxide, acenaphthenol, and n-(1-(4-bromophenyl)ethyl)pivalamide (PAMD). All three solutes have the possibility of hydrogen bonding with the solvent, the last two may also form ring-ring interactions, and the last also has multiple hydrogen bonding sites. For PAMD, the impact of conformational averaging is examined by comparing the chirality transfer about rigid and flexible solutes.  相似文献   

3.
Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.  相似文献   

4.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

5.
The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride-based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large-scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical measurements. By adding chirality to the properties transferrable from monomers to the final product of a thermal polymerization, this study confirms the potential of using supramolecular precursors to produce carbon and CN materials and electrodes with designed chemical properties.  相似文献   

6.
苏二正 《分子催化》2015,(4):390-401
在绿色化学研究领域,溶剂占据着重要的位置。作为一个绿色溶剂必须满足廉价易得、可生物降解、无毒、可循环使用、无挥发性等标准的要求。但是至今能满足这些要求的溶剂仍然非常有限。近年来,深共熔溶剂(Deep Eutectic Solvents,DESs)被认为可以作为绿色溶剂替代传统的有机溶剂而受到广泛关注。DESs是由两个或多个成分在特定比例下形成的凝固点大大降低室温液态混合物。与离子液体相比,DESs具有廉价、低毒、可生物降解等特点,在许多领域成为研究热点。本文综述了DESs的生物降解性、毒性/细胞毒性及其作为生物催化反应介质的研究现状。基于对研究现状的认识,对DESs未来研究、应用需要解决的问题进行了讨论。作者期望对DESs生物催化应用研究现状的综述更进一步促进DESs研究、应用的发展。  相似文献   

7.
The hydrogen-bond-directed synthesis, X-ray crystal structures, and optical properties of the first chiral peptide rotaxanes are reported. Collectively these systems provide the first examples of single molecular species where the expression of chirality in the form of a circular dichroism (CD) response can selectively be switched "on" or "off", and its magnitude altered, through controlling the interactions between mechanically interlocked submolecular components. The switching is achievable both thermally and through changes in the nature of the environment. Peptido[2]rotaxanes consisting of an intrinsically achiral benzylic amide macrocycle locked onto various chiral dipeptide (Gly-L-Ala, Gly-L-Leu, Gly-L-Met, Gly-L-Phe, and Gly-L-Pro) threads exhibit strong (10-20k deg cm(2) dmol(-1)) negative induced CD (theta;) values in nonpolar solvents (e.g. CHCl(3)), where the intramolecular hydrogen bonding between thread and macrocycle is maximized. In polar solvents (e.g., MeOH), where the intercomponent hydrogen bonding is weakened, or switched off completely, the elliptical polarization falls close to zero in some cases and can even be switched to large positive values in others. Importantly, the mechanism of generating the switchable CD response in the chiral peptide rotaxanes is also determined: a combination of semiempirical calculations and geometrical modeling using the continuous chirality measure (CCM) shows that the chirality is transmitted from the amino acid asymmetric center on the thread via the macrocycle to the C-terminal stopper of the rotaxane. This understanding could have important implications for other areas where chiral transmission from one chemical entity to another underpins a physical or chemical response, such as the seeding of supertwisted nematic liquid crystalline phases or asymmetric synthesis.  相似文献   

8.
The enantioseparation of chiral drugs via CE was first investigated using β‐CD as chiral additive and deep eutectic solvents (DESs) as auxiliary additive. The results showed that improved separation of tested chiral drugs was obtained in the presence of DESs and β‐CD compared to the single β‐CD separation system. With the optimized condition, resolutions of DESs applied β‐CD separation system for rac‐Zopiclone, rac‐Salbutamol, and rac‐Amlodipine increased 3–4.2 times as single β‐CD separation system. The resolutions reached 4.74, 6.37, and 9.67, respectively. The results demonstrate that DESs are viable additives to CD system in CE for the separation of the chiral drugs.  相似文献   

9.
We report an ultra-fast helix induction and subsequent static helicity memory in poly(biphenylylacetylene) (PBPA- A ) assisted by a catalytic amount of nonracemic ammonium salts comprised of non-coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF) as a counter anion. The remarkable acceleration of the helix-induction rate in PBPA- A accompanied by the significant amplification of the asymmetry relies on the two methoxymethoxy groups of the biphenyl pendants, which can gain access to enfold the chiral ammoniums in a crown-ether manner in specific aromatic solvents, leading to ultra-fast helicity induction, which is completed within 30 s. In aromatic solvents, helicity memory is lost rapidly, but is quite stable in long-chain hydrocarbons. The best use of specific solvents for helicity induction and static helicity memory, respectively, provides a highly sensitive chirality sensing system toward a small amount of chiral amines and amino acids when complexed with BArF.  相似文献   

10.
赵泽馨  纪颖鹤  刘晓妹  赵龙山 《色谱》2021,39(2):152-161
随着绿色化学的发展,开发和应用符合绿色化学要求的溶剂和方法备受关注。作为离子液体类似物,低共熔溶剂(deep eutectic solvent, DES)是通过氢键受体(hydrogen bond acceptor, HBA)和氢键供体(hydrogen bond donator, HBD)的氢键作用而形成的一种混合物,具有环境友好、制备简单、成本低、可生物降解等优点,在很多领域均有越来越广泛的应用。DES可以从不同样品中萃取和分离不同的目标化合物,其作为萃取溶剂具有独特的优势,可以获得较高的萃取效率且样品基质对分析过程的影响较小。在分散液液微萃取(dispersive liquid-liquid micro-extraction, DLLME)程序中,DES可以萃取复杂基质中的残留药物、金属离子和生物活性成分;与传统的萃取方法相比,该方法具有对有机试剂需求少,萃取效率更高等明显优势。而且,在DLLME中加入DES作为分散剂,能够加速萃取剂在样品溶液中的扩散,具有小型化、成本低等优点。相比于传统分散剂甲醇、乙腈的高挥发性、易燃性,DES的高稳定性、低毒性使其在绿色化学领域中更具有优势,应用更广。因此,DES与DLLME的结合近年来发展迅速。不仅如此,DES与固相萃取联合应用也具有广泛的应用前景,在与固相萃取小柱和搅拌棒联合应用时,DES可以作为洗脱剂,氢键供体及氢键给体的用量之比是洗脱效率的重要考察因素之一。在与磁性材料联用时,DES能与磁性多壁碳纳米管、磁性氧化石墨烯等纳米复合材料结合,通过氢键、π-π作用力和静电作用力等特异性吸附目标分析物。并且能够参与磁性凝胶和分子印迹聚合物的合成,推动磁性材料向绿色化学的方向发展,进一步拓展DES的应用。作为一类新兴的绿色溶剂,DES在化合物的萃取分离技术方面受到广泛关注,在不同的萃取技术中扮演了不同的角色,并表现出良好的性能,因此逐渐成为绿色化学领域的研究重点。该文整合了DES在萃取分离技术中的研究进展,介绍了DES的制备、性质和分类,对DES在DLLME和固相萃取中的应用进行了总结和归类,并展望了DES在萃取分离技术中的应用前景,为DES未来的应用提供参考。  相似文献   

11.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

12.
近年来,低共熔溶剂(DESs)引起了人们的广泛关注,在诸多领域得到应用。DESs一般由氢键供体(HBDs)和氢键受体(HBAs)通过氢键作用形成,其热稳定性研究对于其高温应用具有重要意义。本文利用热重分析法(TG)对40种DESs的热稳定性进行了系统研究,并得到了所研究DESs的开始分解温度(Tonset)。值得注意的是,DESs受热后的变化情况与离子液体不同,呈现出分阶段失重的现象。通常形成DESs的氢键在升温后首先被破坏,从而导致DESs分解成组成其的HBDs和HBAs。然后热稳定性较差(或者沸点较低)的HBDs首先分解(或挥发),而HBAs则在更高温度下分解(或挥发)。例如常见的HBA氯化胆碱(ChCl)在250 ℃附近开始分解。氢键强度对DESs受热后的表现起着重要的作用,DESs中的氢键会阻碍分子“逃脱”,使得Tonset向高温方向移动。此外,我们考察了阴离子、氢键供体、摩尔比对DESs热稳定性的影响,发现HBDs自身的挥发或分解对DESs的热稳定性起着决定性作用。由于用Tonset值会高估DESs的热稳定性,长期热稳定性的考察对其工业应用具有重要价值。本研究能帮助人们理解DESs的热分解行为,为制备具有适当热稳定性的DESs提供依据。  相似文献   

13.
For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l ‐phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials.  相似文献   

14.
The regulation of supramolecular chirality has applications in various aspects including asymmetric catalysis, chiral sensing, optical materials and smart devices. Additionally, it provides opportunities for the simulation of important activities in living organisms and the clarification of their mechanisms. Herein, we synthesized a chiral gelator SQLG (styrylquinoxalinyl L-amino glutamic diamide) containing a π-conjugated headgroup by introducing the quinoxaline-derived moiety into L-glutamic diamide-based amphiphile via two simple condensation steps. SQLG self-assembled into nanofibers through multiple intermolecular interactions, including ππ stacking, hydrogen bonding and van der Waals interaction, leading to gelation of various organic solvents ranging from nonpolar to polar ones. Chirality transfer from the chiral center to the supramolecular level was observed when organogels formed, which manifested itself in circular dichroism (CD) spectra. The organogels formed in polar solvents such as N, N-dimethylformamide (DMF) and nonpolar solvents such as toluene exhibited opposite signals of supramolecular chirality, attributed to different hydrogen bonding strengths and thus two different types of gelator stacking modes of the gelators which was confirmed by infrared spectroscopy (IR) and X-ray diffraction (XRD). Circular polarized luminescence (CPL) denotes left-handed or right-handed circularly polarized light with different intensities emitted by the chiral luminescent system, and it characterizes the chirality of the excited state, which finds potential application in fields such as 3D optical displays, optical data storage, polarization-based information encryption and bioencoding. Owing to the strong fluorescence and supramolecular chirality, the toluene gel emitted right-handed circular polarized luminescence upon excitation, while the gel formed in DMF did not exhibit CPL emission because of its relatively weak fluorescence. Furthermore, the organogels responded rapidly and distinctly to the stimulus of acid due to the proton-accepting sites in the quinoxaline skeleton. Utilizing NMR spectroscopy, we found that the two nitrogen atoms in the quinoxaline moiety could be protonated upon acidification. During the process, intramolecular charge transfer (ICT) was significantly strengthened and the driving forces of self-assembly underwent remarkable changes, resulting in the collapse of the yellow transparent organogel into a red dispersion. Meanwhile, transformation from nanofibers to nanospheres was observed using a scanning electron microscope (SEM). With change in stacking modes in the supramolecular assembly, a complete inversion of the CD signal was detected. The CPL signal was found to be switched off, which along with the other changes of the system could subsequently be recovered by neutralization of the entire system. Therefore, we constructed a chiroptical switch with multiple stimuli-responsiveness through the introduction of an acid-sensitive π-conjugated moiety into the L-glutamic diamide-based chiral amphiphile.  相似文献   

15.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

16.
Chiral α‐hydroxyl acids are of great importance in chemical synthesis. Current methods for recognizing their chirality by 1H NMR are limited by their small chemical shift differences and intrinsic solubility problem in organic solvents. Herein, we developed three YbDO3A(ala)3 derivatives to recognize four different commercially available chiral α‐hydroxyl acids in aqueous solution through 1H NMR and chemical exchange saturation transfer (CEST) spectroscopy. The shift difference between chiral α‐hydroxyl acid observed by proton and CEST NMR ranged from 15–40 and 20–40 ppm, respectively. Our work demonstrates for first time, that even one chiral center on the side‐arm chain of cyclen could set the stage for rotation of the other two non‐chiral side chains into a preferred position. This is ascribed to the lower energy state of the structure. The results show that chiral YbDO3A‐like complexes can be used to discriminate chiral α‐hydroxyl acids with a distinct signal difference.  相似文献   

17.
An increasing number of strategies and tools have been proposed to endow the electrochemical interphase with chirality, to achieve enantiodiscrimination in analytical and/or preparative applications. So far, chirality has mostly been implemented not only at the electrode surface side but also on the medium one. Recently, the attractiveness of the latter approach has remarkably increased on account of the increasing availability of advanced chiral molecular media with intrinsic attractive features for electrochemistry applications, such as chiral ionic liquids, chiral ionic liquid crystals, and chiral deep eutectic solvents. With respect to solid layer/fixed chiral networks, advanced chiral media can still offer a reasonably high degree of local structuring, while being less demanding concerning preparation and management protocols, as well as less sensitive to fouling/regeneration issues. Different ways to implement chirality in advanced molecular media, including cases of powerful ‘inherent chirality,’ will be presented and discussed, particularly focusing on recent applications in the electrochemical field.  相似文献   

18.
汽车尾气中硫化物的排放所导致的酸雨和PM2.5等环境污染问题广受关注.各个国家和地区也相继制定了严格的标准来控制柴油中的含硫量.加氢脱硫工艺成熟,但是需要在高温高压下进行,并且柴油中二苯并噻吩及其衍生物的位阻效应使得加氢脱硫难以将其脱除.氧化脱硫作为加氢脱硫的补充技术,以其反应条件温和等优点成为脱硫研究的重要课题.作为离子液体类似物,低共熔剂不仅具有离子液体的优点,而且无毒、生物可降解、价格低廉,且制备过程简单,是一种绿色溶剂.低共熔剂作为萃取剂和催化剂用于柴油的氧化脱硫中,展现出非常好的应用前景.尽管在低共熔剂氧化脱硫体系中氢键发挥着重要的作用,但是关于低共熔剂组成,氢键强度与氧化脱硫反应活性三者之间关系的探究相对缺乏.本文以己内酰胺和草酸为原料,调节二者配比制备了一系列己内酰胺基低共熔剂.通过差示扫描量热法、傅里叶变换红外光谱、核磁共振氢谱以及热重分析对制备的低共熔剂进行表征,从而确定组成与氢键之间的关系.将制备的低共熔剂应用于氧化脱硫体系中,发现氧化脱硫率随着低共熔剂组成的变化而规律变化.此外,系统地研究了影响氧化脱硫效率的反应参数.结果表明,在优化的反应条件下,己内酰胺基酸性低共熔剂的脱硫率可以达到98%.该反应体系下,三种不同硫化物的脱除率按照以下顺序依次递减:二苯并噻吩4,6-二甲基二苯并噻吩苯并噻吩.实验数据与表征结果表明,在低共熔剂氧化脱硫体系中氢键相互作用影响脱硫效率,而氢键相互作用则可以通过调节低共熔剂的组成来改变.该结果为了解柴油深度脱硫机理提供了新的思路.  相似文献   

19.
We propose a method for calculating the Gibbs energies of hydrogen bonding of solutes with associated solvents via the thermodynamic analysis of experimental values of solvation Gibbs energies. The method is applied to solutions of different proton acceptors in methanol. It is shown that the contribution of hydrogen bonding processes to the solvation Gibbs energy in methanol is in most cases very different in magnitude from the formation Gibbs energy of equimolar complexes of the solute and methanol. We demonstrate the need to include the contributions from solvophobic effects in investigating intermolecular interactions in associated solvents by means of thermodynamic data.  相似文献   

20.
To understand the behavior of chiral nanostructures, it is of critical importance to study how achiral molecules regulate the chirality of such nanostructures and what the main driving forces for the regulation processes are. In this work, the supramolecular chirality of helical nanofibers consisting of phenylalanine‐based enantiomers is inverted by achiral bis(pyridinyl) derivatives through co‐assembly. This inversion is mainly mediated by intermolecular hydrogen bonding interactions between the achiral additives and the chiral molecules, which may induce stereoselective interactions and different reorientations for the assembled molecules, as confirmed by calculations. This work not only exemplifies a feasible method to invert the helicity of chiral nanostructures by the addition of achiral molecules, but also provides a method to explore their functions in environments where chiral and achiral molecules are in close proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号