首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation.  相似文献   

2.
Three five‐coordinate iron(IV) imide complexes have been synthesized and characterized. These novel structures have disparate spin states on the iron as a function of the R‐group attached to the imide, with alkyl groups leading to low‐spin diamagnetic (S=0) complexes and an aryl group leading to an intermediate‐spin (S=1) complex. The different spin states lead to significant differences in the bonding about the iron center as well as the spectroscopic properties of these complexes. Mössbauer spectroscopy confirmed that all three imide complexes are in the iron(IV) oxidation state. The combination of diamagnetism and 15N labeling allowed for the first 15N NMR resonance recorded on an iron imide. Multi‐reference calculations corroborate the experimental structural findings and suggest how the bonding is distinctly different on the imide ligand between the two spin states.  相似文献   

3.
The kinetics of the oxidation of a substituted thiourea, trimethylthiourea (TMTU), by chlorite have been studied in slightly acidic media. The reaction is much faster than the comparable oxidation of the unsubstituted thiourea by chlorite. The stoichiometry of the reaction was experimentally deduced to be 2ClO2- + Me2N(NHMe)C=S + H2O --> 2Cl- + Me2N(NHMe)C=O + SO4(2-) + 2H+. In excess chlorite conditions, chlorine dioxide is formed after a short induction period. The oxidation of TMTU occurs in two phases. It starts initially with S-oxygenation of the sulfur center to yield the sulfinic acid, which then reacts in the second phase predominantly through an initial hydrolysis to produce trimethylurea and the sulfoxylate anion. The sulfoxylate anion is a highly reducing species which is rapidly oxidized to sulfate. The sulfinic and sulfonic acids of TMTU exists in the form of zwitterionic species that are stable in acidic environments and rapidly decompose in basic environments. The rate of oxidation of the sulfonic acid is determined by its rate of hydrolysis, which is inhibited by acid. The direct reaction of chlorine dioxide and TMTU is autocatalytic and also inhibited by acid. It commences with the initial formation of an adduct of the radical chlorine dioxide species with the electron-rich sulfur center of the thiocarbamide followed by reaction of the adduct with another chlorine dioxide molecule and subsequent hydrolysis to yield chlorite and a sulfenic acid. The bimolecular rate constant for the reaction of chlorine dioxide and TMTU was experimentally determined as 16 +/- 3.0 M(-1) s(-1) at pH 1.00.  相似文献   

4.
cis-[Ru(2,9-Me(2)phen)(2)(OH(2))(2)](2+) reacts readily with chlorite at room temperature at pH 4.9 and 6.8. The ruthenium(II) complex can catalyze the disproportionation of chlorite to chlorate and chloride, the oxidation of chlorite to chlorine dioxide, as well as the oxidation of alcohols by chlorite.  相似文献   

5.
The activity of eleven separated iron complexes and nine in situ‐generated iron complexes towards catalytic water oxidation have been examined in aqueous solutions with Ce(NH4)2(NO3)6 as the oxidant. Two iron complexes bearing tridentate and tetradentate macrocyclic ligands were found to be novel water oxidation catalysts. The one with tetradentate ligand exhibited a promising activity with a turnover number of 65 for oxygen evolution.  相似文献   

6.
The oxidation of thiourea by chlorite within the pH range of 2 to 5.5 has been found to produce a single wave of chlorine dioxide in unstirred solutions. The wave has been studied in narrow tubes of varying diameters and in petri dishes. The wave appears after an induction period that depends on the acid concentration, the [ClO2?]/[CS(NH2)2] ratio, the temperature, and the diameter of the tube. The wave starts from the surface in a tube and from the edges in a petri dish. The rate of wave movement is proportional to the ratio and the acid concentration. Barium chloride and starch were used as indicators. The wave could be initiated electrochemically and by addition of a drop of solution containing chlorine dioxide. The chlorine dioxide is produced by the oxidation of chlorite by hypochlorous acid.  相似文献   

7.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

8.
The chlorite ion is an unavoidable by-product of the disinfection of drinking water by means of chlorine dioxide. The maximum concentration values of chlorite accepted in many countries regulations range from 0.2 to 1.0 mg L–1. A simple, inexpensive and quickly set up voltammetric procedure for the on-site determination of chlorite in drinking water networks is described. This procedure is suitable for the whole range of applications in drinking water plants. A useful cell for on-field analysis has been developed. Surface morphology and behaviour of carbon-based working electrodes have been investigated by voltammetry and atomic force microscopy (AFM). Actual samples of different types of water networks have been analysed for chlorite concentration.  相似文献   

9.
Jiang ZL  Zhang BM  Liang AH 《Talanta》2005,66(3):783-788
A new simple, selective and sensitive method for the determination of trace chlorine dioxide in water has been developed, based on the oxidation by chlorine dioxide to reduction the fluorescence of rhodamine dyes in ammonia-ammonium chloride buffer solution. Four rhodamine dyes systems such as rhodamine S, rhodamine G, rhodamine B and butyl-rhodamine B were tested. The rhodamine S system is the best, with a linear range of 0.0060-0.450 μg mL−1 and a detection limit of 0.0030 μg mL−1 ClO2. It was applied to the determination of chlorine dioxide in synthetic samples and real samples, with satisfactory results. This method has good selectivity, especially, other chlorine species such as chlorine, hypochlorite, chlorite and chlorate do not interfere the determination. The mechanism of fluorescence reduction was also considered.  相似文献   

10.
王妮  郑浩铨  张伟  曹睿 《催化学报》2018,39(2):228-244
由于传统化石能源的不可再生性,其储量日益减少.同时,传统化石能源的使用对环境产生了巨大影响,给人类社会带来了一系列问题,包括温室效应、酸雨等.因此,进入二十一世纪以后,人类面临着日益严峻的能源危机和环境问题,寻找清洁、高效的替代能源已经迫在眉睫.太阳能被认为是一种洁净的可再生能源.自然界通过光合作用将太阳能转化为化学能,在这一过程中,水被氧化产生氧气,同时释放出的电子和质子通过和二氧化碳作用生成碳水化合物.为了模拟这一过程,人工光合作用可以直接将电子和质子结合形成氢气.由此生成的氢气也被认为是洁净的可再生能源,因为在其燃烧过程中只产生水.因此,通过光致水分解析氢析氧的人工光合作用受到了越来越广泛的重视.水分解可以分为两个独立的半反应,即水的氧化析氧和水的还原析氢.水的氧化无论在热力学还是动力学方面,都存在着非常大的阻碍.在热力学上,两分子的水氧化生成一分子氧气需要提供很多能量(ΔE=1.23 V vs NHE).在动力学上,由于涉及到四个氢原子和两个氧原子的重组,并且涉及到氧氧键形成并释放出一分子氧气,因此水氧化是一个非常缓慢的过程.在自然界,水的氧化主要发生在光合作用中,在绿色植物的叶绿体中完成.通过对光合作用的研究,科学家们发现氧气的产生由光系统Ⅱ(PSII)中的释氧中心来完成.释氧中心是一个钙锰簇合物,由四个锰和一个钙组成(Mn_4CaO_x).自然界水分解产生氧气的过程给了我们很大启示,对设计和研究高效稳定的水氧化催化剂具有一定的指导意义.目前水氧化催化剂主要有两大类.第一类是基于材料的水氧化催化剂.该类催化剂的催化效率高,过电势小,但是对水氧化催化过程的机理缺乏深入研究.第二类是基于金属配合物的分子催化剂.相比基于材料的催化剂,分子催化剂具有以下特点:(1)分子催化剂的结构可以通过实验手段表征清楚;(2)可以结合光谱对水氧化的机理进行深入研究,可以对催化过程中间体进行表征;(3)催化剂的结构可以从分子水平上进行修饰,因此可以更好地研究催化效率与结构之间的关系,为设计高效、稳定的催化剂提供必要信息;(4)比较容易组装成分子器件从而应用到实际的水氧化装置中;(5)通过实验与理论的结合,对氧氧成键提出新的认识与理解.近几年来,一些单核的金属配合物逐渐被发现可以高效、稳定地催化水氧化.研究表明,一些基于钌和铱的催化剂具有良好的催化活性,但由于金属钌和铱储量少、价格昂贵等因素,限制了该类催化剂的大量使用.由于第一过渡系金属元素具有储量丰富、安全无毒、廉价易得等优势,第一过渡周期金属化合物逐渐成为科学家们研究的热点.近几年来,基于第一过渡系金属的水氧化催化剂已经有大量报道.本文主要总结了近几年来基于第一过渡系金属的单核水氧化分子催化剂.通过对催化机理进行深入的讨论,特别是对氧氧成键的总结,本文将对设计合成结构新颖、具有高催化效率和良好稳定性的水氧化分子催化剂提供理论依据.  相似文献   

11.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

12.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

13.
用离子色谱法测定水中的二氧化氯、氯、亚氯酸根及氯酸根   总被引:15,自引:0,他引:15  
田芳  谢家理 《分析化学》2004,32(4):522-524
建立了一种测定水中的ClO2、Cl2、ClO2^-、ClO3^-离子色谱法,在含有碳酸氢钠缓冲溶液的中性条件下,用NaNO2将ClO2、Cl2还原为ClO2^-、Cl^-,通过测定ClO^-和NO3^-的变化值,间接测定ClO2和Cl2。加入硫代乙酰胺(TAA)作掩蔽剂测定ClO2^-。  相似文献   

14.
Studies were designed to evaluate the amaranth method for measuring chlorine dioxide in water. Specifically, the effects of pH and temperature are examined for the amaranth method. The results of interference studies are reported for free available chlorine species, chlorite ion, chlorate ion, iron (III) ion, oxidized manganese, and monochloramine. Additional research focused on selectivity enhancement for chlorine dioxide over free available chlorine using ammonia/ammonium chloride buffer and gas diffusion-flow injection analysis. The results of method detection limit and accuracy and precision studies are reported for measuring chlorine dioxide in the presence of free available chlorine.  相似文献   

15.
We describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox‐potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH‐dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six‐coordinate [RuIV] center to yield an anionic seven‐coordinate [RuIV?OH]? intermediate is one of the key steps of a single‐site mechanism in which all species are anionic or neutral. These complexes are among the fastest single‐site catalysts reported to date.  相似文献   

16.
A Zr-based metal-organic framework has been synthesized and employed as a catalyst for photochemical carbon dioxide reduction coupled with water oxidation. The catalyst shows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property, which is further confirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbon dioxide with a turn-over frequency (TOF) of 0.69 h−1 in addition to oxygen, which was produced with a TOF of 0.54 h−1. No external photosensitizer is used and the ligand itself acts as the light harvester. The efficient and selective photochemical carbon dioxide reduction to formic acid with concomitant water oxidation using Zr-based MOF as catalyst is thus demonstrated here.  相似文献   

17.
The chlorite ion is the principal by-product of the treatment of drinking water by chlorine dioxide. In function of the chlorite salt instability, standard solutions of this ion need standardization by iodometric titration, which is a reliable method although labor intensive and time consuming. An alternative method to standardization of aqueous chlorite solutions, based on its direct UV absorption measurement, was presented. Besides the maximum absorption (260 nm) generally used in other studies, the minimum (239 nm) and isosbestic (248 nm) wavelengths were proposed as supplementary points to chlorite quantification and their molar absorptivity coefficients were estimated (155.2 ± 0.6, 104.5 ± 1.0 and 69.0 ± 1.2 L cm−1 mol−1, respectively). The direct spectrophotometric determination of chlorite could be made selectively even in the presence of high concentration of major contaminants (chorine dioxide, chloride and chlorate), being a simple and rapid method, consuming very low volume of sample and generating low quantities of laboratory wastes.  相似文献   

18.
We have designed a series of hydroxy(aryl)‐λ3‐iodane–[18]crown‐6 complexes, prepared from the corresponding iodosylbenzene derivatives and superacids in the presence of [18]crown‐6, and have investigated their reactivities in aqueous media. These activated iodosylbenzene monomers are all non‐hygroscopic shelf‐storable reagents, but they maintain high oxidizing ability in water. The complexes are effective for the oxidation of phenols, sulfides, olefins, silyl enol ethers, and alkyl(trifluoro)borates under mild conditions. Furthermore, hydroxy‐λ3‐iodane–[18]crown‐6 complexes serve as efficient progenitors for the synthesis of diaryl‐, vinyl‐, and alkynyl‐λ3‐iodanes in water. Other less polar organic solvents, such as methanol, acetonitrile, and dichloromethane, are also usable in some cases.  相似文献   

19.
We report the preparation of UFe(CO)3 and OUFe(CO)3 complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(−II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df–d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date.  相似文献   

20.
The present study focuses on the oxidation of the water‐soluble and water‐insoluble iron(III)–porphyrin complexes [FeIII(TMPS)] and [FeIII(TMP)] (TMPS=meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphyrinato, TMP=meso‐tetrakis(2,4,6‐trimethylphenyl)porphyrinato), respectively, by meta‐chloroperoxybenzoic acid (m‐CPBA) in aqueous methanol and aqueous acetonitrile solutions of varying acidity. With the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique, the complete spectral changes that accompany the formation and decomposition of the primary product of O? O bond cleavage in the acylperoxoiron(III)–porphyrin intermediate [(P)FeIII? OOX] (P=porphyrin) were successfully recorded and characterized. The results clearly indicate that the O? O bond in m‐CPBA is heterolytically cleaved by the studied iron(III)–porphyrin complexes independent of the acidity of the reaction medium. The existence of two different oxidation products under acidic and basic conditions is suggested not to be the result of a mechanistic changeover in the mode of O? O bond cleavage on going from low to high pH values, but rather the effect of environmental changes on the actual product of the O? O bond cleavage in [(P)FeIII? OOX]. The oxoiron(IV)–porphyrin cation radical formed as a primary oxidation product over the entire pH range can undergo a one‐ or two‐electron reduction depending on the selected reaction conditions. The present study provides valuable information for the interpretation and improved understanding of results obtained in product‐analysis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号